MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgruspgrb Structured version   Visualization version   Unicode version

Theorem usgruspgrb 26076
Description: A class is a simple graph iff it is a simple pseudograph without loops. (Contributed by AV, 18-Oct-2020.)
Assertion
Ref Expression
usgruspgrb  |-  ( G  e. USGraph 
<->  ( G  e. USPGraph  /\  A. e  e.  (Edg `  G
) ( # `  e
)  =  2 ) )
Distinct variable group:    e, G

Proof of Theorem usgruspgrb
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 usgruspgr 26073 . . 3  |-  ( G  e. USGraph  ->  G  e. USPGraph  )
2 edgusgr 26055 . . . . 5  |-  ( ( G  e. USGraph  /\  e  e.  (Edg `  G )
)  ->  ( e  e.  ~P (Vtx `  G
)  /\  ( # `  e
)  =  2 ) )
32simprd 479 . . . 4  |-  ( ( G  e. USGraph  /\  e  e.  (Edg `  G )
)  ->  ( # `  e
)  =  2 )
43ralrimiva 2966 . . 3  |-  ( G  e. USGraph  ->  A. e  e.  (Edg
`  G ) (
# `  e )  =  2 )
51, 4jca 554 . 2  |-  ( G  e. USGraph  ->  ( G  e. USPGraph  /\ 
A. e  e.  (Edg
`  G ) (
# `  e )  =  2 ) )
6 edgval 25941 . . . . . . 7  |-  (Edg `  G )  =  ran  (iEdg `  G )
76a1i 11 . . . . . 6  |-  ( G  e. USPGraph  ->  (Edg `  G
)  =  ran  (iEdg `  G ) )
87raleqdv 3144 . . . . 5  |-  ( G  e. USPGraph  ->  ( A. e  e.  (Edg `  G )
( # `  e )  =  2  <->  A. e  e.  ran  (iEdg `  G
) ( # `  e
)  =  2 ) )
9 eqid 2622 . . . . . . 7  |-  (Vtx `  G )  =  (Vtx
`  G )
10 eqid 2622 . . . . . . 7  |-  (iEdg `  G )  =  (iEdg `  G )
119, 10uspgrf 26049 . . . . . 6  |-  ( G  e. USPGraph  ->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
12 f1f 6101 . . . . . . . . . 10  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  (iEdg `  G ) : dom  (iEdg `  G
) --> { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
13 frn 6053 . . . . . . . . . 10  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) --> { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  ran  (iEdg `  G
)  C_  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
1412, 13syl 17 . . . . . . . . 9  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  ran  (iEdg `  G
)  C_  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } )
15 ssel2 3598 . . . . . . . . . . . . . . 15  |-  ( ( ran  (iEdg `  G
)  C_  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 }  /\  y  e.  ran  (iEdg `  G
) )  ->  y  e.  { x  e.  ( ~P (Vtx `  G
)  \  { (/) } )  |  ( # `  x
)  <_  2 }
)
1615expcom 451 . . . . . . . . . . . . . 14  |-  ( y  e.  ran  (iEdg `  G )  ->  ( ran  (iEdg `  G )  C_ 
{ x  e.  ( ~P (Vtx `  G
)  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  y  e.  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 } ) )
17 fveq2 6191 . . . . . . . . . . . . . . . . 17  |-  ( e  =  y  ->  ( # `
 e )  =  ( # `  y
) )
1817eqeq1d 2624 . . . . . . . . . . . . . . . 16  |-  ( e  =  y  ->  (
( # `  e )  =  2  <->  ( # `  y
)  =  2 ) )
1918rspcv 3305 . . . . . . . . . . . . . . 15  |-  ( y  e.  ran  (iEdg `  G )  ->  ( A. e  e.  ran  (iEdg `  G ) (
# `  e )  =  2  ->  ( # `
 y )  =  2 ) )
20 fveq2 6191 . . . . . . . . . . . . . . . . . 18  |-  ( x  =  y  ->  ( # `
 x )  =  ( # `  y
) )
2120breq1d 4663 . . . . . . . . . . . . . . . . 17  |-  ( x  =  y  ->  (
( # `  x )  <_  2  <->  ( # `  y
)  <_  2 ) )
2221elrab 3363 . . . . . . . . . . . . . . . 16  |-  ( y  e.  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 }  <->  ( y  e.  ( ~P (Vtx `  G )  \  { (/)
} )  /\  ( # `
 y )  <_ 
2 ) )
23 eldifi 3732 . . . . . . . . . . . . . . . . . . . 20  |-  ( y  e.  ( ~P (Vtx `  G )  \  { (/)
} )  ->  y  e.  ~P (Vtx `  G
) )
2423anim1i 592 . . . . . . . . . . . . . . . . . . 19  |-  ( ( y  e.  ( ~P (Vtx `  G )  \  { (/) } )  /\  ( # `  y )  =  2 )  -> 
( y  e.  ~P (Vtx `  G )  /\  ( # `  y )  =  2 ) )
2520eqeq1d 2624 . . . . . . . . . . . . . . . . . . . 20  |-  ( x  =  y  ->  (
( # `  x )  =  2  <->  ( # `  y
)  =  2 ) )
2625elrab 3363 . . . . . . . . . . . . . . . . . . 19  |-  ( y  e.  { x  e. 
~P (Vtx `  G
)  |  ( # `  x )  =  2 }  <->  ( y  e. 
~P (Vtx `  G
)  /\  ( # `  y
)  =  2 ) )
2724, 26sylibr 224 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  ( ~P (Vtx `  G )  \  { (/) } )  /\  ( # `  y )  =  2 )  -> 
y  e.  { x  e.  ~P (Vtx `  G
)  |  ( # `  x )  =  2 } )
2827ex 450 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  ( ~P (Vtx `  G )  \  { (/)
} )  ->  (
( # `  y )  =  2  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  ( # `  x
)  =  2 } ) )
2928adantr 481 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  ( ~P (Vtx `  G )  \  { (/) } )  /\  ( # `  y )  <_  2 )  -> 
( ( # `  y
)  =  2  -> 
y  e.  { x  e.  ~P (Vtx `  G
)  |  ( # `  x )  =  2 } ) )
3022, 29sylbi 207 . . . . . . . . . . . . . . 15  |-  ( y  e.  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 }  ->  (
( # `  y )  =  2  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  ( # `  x
)  =  2 } ) )
3119, 30syl9 77 . . . . . . . . . . . . . 14  |-  ( y  e.  ran  (iEdg `  G )  ->  (
y  e.  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 }  ->  ( A. e  e.  ran  (iEdg `  G ) (
# `  e )  =  2  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  ( # `  x
)  =  2 } ) ) )
3216, 31syld 47 . . . . . . . . . . . . 13  |-  ( y  e.  ran  (iEdg `  G )  ->  ( ran  (iEdg `  G )  C_ 
{ x  e.  ( ~P (Vtx `  G
)  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  ( A. e  e. 
ran  (iEdg `  G )
( # `  e )  =  2  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  ( # `  x
)  =  2 } ) ) )
3332com13 88 . . . . . . . . . . . 12  |-  ( A. e  e.  ran  (iEdg `  G ) ( # `  e )  =  2  ->  ( ran  (iEdg `  G )  C_  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 }  ->  (
y  e.  ran  (iEdg `  G )  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  ( # `  x
)  =  2 } ) ) )
3433imp 445 . . . . . . . . . . 11  |-  ( ( A. e  e.  ran  (iEdg `  G ) (
# `  e )  =  2  /\  ran  (iEdg `  G )  C_  { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }
)  ->  ( y  e.  ran  (iEdg `  G
)  ->  y  e.  { x  e.  ~P (Vtx `  G )  |  (
# `  x )  =  2 } ) )
3534ssrdv 3609 . . . . . . . . . 10  |-  ( ( A. e  e.  ran  (iEdg `  G ) (
# `  e )  =  2  /\  ran  (iEdg `  G )  C_  { x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }
)  ->  ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G
)  |  ( # `  x )  =  2 } )
3635ex 450 . . . . . . . . 9  |-  ( A. e  e.  ran  (iEdg `  G ) ( # `  e )  =  2  ->  ( ran  (iEdg `  G )  C_  { x  e.  ( ~P (Vtx `  G )  \  { (/)
} )  |  (
# `  x )  <_  2 }  ->  ran  (iEdg `  G )  C_  { x  e.  ~P (Vtx `  G )  |  (
# `  x )  =  2 } ) )
3714, 36mpan9 486 . . . . . . . 8  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ( ~P (Vtx `  G
)  \  { (/) } )  |  ( # `  x
)  <_  2 }  /\  A. e  e.  ran  (iEdg `  G ) (
# `  e )  =  2 )  ->  ran  (iEdg `  G )  C_ 
{ x  e.  ~P (Vtx `  G )  |  ( # `  x
)  =  2 } )
38 f1ssr 6107 . . . . . . . 8  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ( ~P (Vtx `  G
)  \  { (/) } )  |  ( # `  x
)  <_  2 }  /\  ran  (iEdg `  G
)  C_  { x  e.  ~P (Vtx `  G
)  |  ( # `  x )  =  2 } )  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  (
# `  x )  =  2 } )
3937, 38syldan 487 . . . . . . 7  |-  ( ( (iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ( ~P (Vtx `  G
)  \  { (/) } )  |  ( # `  x
)  <_  2 }  /\  A. e  e.  ran  (iEdg `  G ) (
# `  e )  =  2 )  -> 
(iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  ( # `  x
)  =  2 } )
4039ex 450 . . . . . 6  |-  ( (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ( ~P (Vtx `  G )  \  { (/) } )  |  ( # `  x
)  <_  2 }  ->  ( A. e  e. 
ran  (iEdg `  G )
( # `  e )  =  2  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  (
# `  x )  =  2 } ) )
4111, 40syl 17 . . . . 5  |-  ( G  e. USPGraph  ->  ( A. e  e.  ran  (iEdg `  G
) ( # `  e
)  =  2  -> 
(iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  ( # `  x
)  =  2 } ) )
428, 41sylbid 230 . . . 4  |-  ( G  e. USPGraph  ->  ( A. e  e.  (Edg `  G )
( # `  e )  =  2  ->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  (
# `  x )  =  2 } ) )
4342imp 445 . . 3  |-  ( ( G  e. USPGraph  /\  A. e  e.  (Edg `  G )
( # `  e )  =  2 )  -> 
(iEdg `  G ) : dom  (iEdg `  G
) -1-1-> { x  e.  ~P (Vtx `  G )  |  ( # `  x
)  =  2 } )
449, 10isusgrs 26051 . . . 4  |-  ( G  e. USPGraph  ->  ( G  e. USGraph  <->  (iEdg `  G ) : dom  (iEdg `  G ) -1-1-> {
x  e.  ~P (Vtx `  G )  |  (
# `  x )  =  2 } ) )
4544adantr 481 . . 3  |-  ( ( G  e. USPGraph  /\  A. e  e.  (Edg `  G )
( # `  e )  =  2 )  -> 
( G  e. USGraph  <->  (iEdg `  G
) : dom  (iEdg `  G ) -1-1-> { x  e.  ~P (Vtx `  G
)  |  ( # `  x )  =  2 } ) )
4643, 45mpbird 247 . 2  |-  ( ( G  e. USPGraph  /\  A. e  e.  (Edg `  G )
( # `  e )  =  2 )  ->  G  e. USGraph  )
475, 46impbii 199 1  |-  ( G  e. USGraph 
<->  ( G  e. USPGraph  /\  A. e  e.  (Edg `  G
) ( # `  e
)  =  2 ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   class class class wbr 4653   dom cdm 5114   ran crn 5115   -->wf 5884   -1-1->wf1 5885   ` cfv 5888    <_ cle 10075   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  Edgcedg 25939   USPGraph cuspgr 26043   USGraph cusgr 26044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-edg 25940  df-uspgr 26045  df-usgr 26046
This theorem is referenced by:  usgr1e  26137
  Copyright terms: Public domain W3C validator