MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  usgrres Structured version   Visualization version   Unicode version

Theorem usgrres 26200
Description: A subgraph obtained by removing one vertex and all edges incident with this vertex from a simple graph (see uhgrspan1 26195) is a simple graph. (Contributed by Alexander van der Vekens, 2-Jan-2018.) (Revised by AV, 19-Dec-2021.)
Hypotheses
Ref Expression
upgrres.v  |-  V  =  (Vtx `  G )
upgrres.e  |-  E  =  (iEdg `  G )
upgrres.f  |-  F  =  { i  e.  dom  E  |  N  e/  ( E `  i ) }
upgrres.s  |-  S  = 
<. ( V  \  { N } ) ,  ( E  |`  F ) >.
Assertion
Ref Expression
usgrres  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  S  e. USGraph  )
Distinct variable groups:    i, E    i, N
Allowed substitution hints:    S( i)    F( i)    G( i)    V( i)

Proof of Theorem usgrres
Dummy variables  p  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 upgrres.v . . . . . 6  |-  V  =  (Vtx `  G )
2 upgrres.e . . . . . 6  |-  E  =  (iEdg `  G )
31, 2usgrf 26050 . . . . 5  |-  ( G  e. USGraph  ->  E : dom  E
-1-1-> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  =  2 } )
4 upgrres.f . . . . . . 7  |-  F  =  { i  e.  dom  E  |  N  e/  ( E `  i ) }
54ssrab3 3688 . . . . . 6  |-  F  C_  dom  E
65a1i 11 . . . . 5  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  F  C_ 
dom  E )
7 f1ssres 6108 . . . . 5  |-  ( ( E : dom  E -1-1-> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x )  =  2 }  /\  F  C_  dom  E )  ->  ( E  |`  F ) : F -1-1-> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  =  2 } )
83, 6, 7syl2an2r 876 . . . 4  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  ( E  |`  F ) : F -1-1-> { x  e.  ( ~P V  \  { (/)
} )  |  (
# `  x )  =  2 } )
9 usgrumgr 26074 . . . . 5  |-  ( G  e. USGraph  ->  G  e. UMGraph  )
101, 2, 4umgrreslem 26197 . . . . 5  |-  ( ( G  e. UMGraph  /\  N  e.  V )  ->  ran  ( E  |`  F ) 
C_  { p  e. 
~P ( V  \  { N } )  |  ( # `  p
)  =  2 } )
119, 10sylan 488 . . . 4  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  ran  ( E  |`  F ) 
C_  { p  e. 
~P ( V  \  { N } )  |  ( # `  p
)  =  2 } )
12 f1ssr 6107 . . . 4  |-  ( ( ( E  |`  F ) : F -1-1-> { x  e.  ( ~P V  \  { (/) } )  |  ( # `  x
)  =  2 }  /\  ran  ( E  |`  F )  C_  { p  e.  ~P ( V  \  { N } )  |  ( # `  p
)  =  2 } )  ->  ( E  |`  F ) : F -1-1-> { p  e.  ~P ( V  \  { N }
)  |  ( # `  p )  =  2 } )
138, 11, 12syl2anc 693 . . 3  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  ( E  |`  F ) : F -1-1-> { p  e.  ~P ( V  \  { N } )  |  (
# `  p )  =  2 } )
14 ssdmres 5420 . . . . 5  |-  ( F 
C_  dom  E  <->  dom  ( E  |`  F )  =  F )
155, 14mpbi 220 . . . 4  |-  dom  ( E  |`  F )  =  F
16 f1eq2 6097 . . . 4  |-  ( dom  ( E  |`  F )  =  F  ->  (
( E  |`  F ) : dom  ( E  |`  F ) -1-1-> { p  e.  ~P ( V  \  { N } )  |  ( # `  p
)  =  2 }  <-> 
( E  |`  F ) : F -1-1-> { p  e.  ~P ( V  \  { N } )  |  ( # `  p
)  =  2 } ) )
1715, 16ax-mp 5 . . 3  |-  ( ( E  |`  F ) : dom  ( E  |`  F ) -1-1-> { p  e.  ~P ( V  \  { N } )  |  ( # `  p
)  =  2 }  <-> 
( E  |`  F ) : F -1-1-> { p  e.  ~P ( V  \  { N } )  |  ( # `  p
)  =  2 } )
1813, 17sylibr 224 . 2  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  ( E  |`  F ) : dom  ( E  |`  F ) -1-1-> { p  e.  ~P ( V  \  { N } )  |  ( # `  p
)  =  2 } )
19 upgrres.s . . . 4  |-  S  = 
<. ( V  \  { N } ) ,  ( E  |`  F ) >.
20 opex 4932 . . . 4  |-  <. ( V  \  { N }
) ,  ( E  |`  F ) >.  e.  _V
2119, 20eqeltri 2697 . . 3  |-  S  e. 
_V
221, 2, 4, 19uhgrspan1lem2 26193 . . . . 5  |-  (Vtx `  S )  =  ( V  \  { N } )
2322eqcomi 2631 . . . 4  |-  ( V 
\  { N }
)  =  (Vtx `  S )
241, 2, 4, 19uhgrspan1lem3 26194 . . . . 5  |-  (iEdg `  S )  =  ( E  |`  F )
2524eqcomi 2631 . . . 4  |-  ( E  |`  F )  =  (iEdg `  S )
2623, 25isusgrs 26051 . . 3  |-  ( S  e.  _V  ->  ( S  e. USGraph  <->  ( E  |`  F ) : dom  ( E  |`  F )
-1-1-> { p  e.  ~P ( V  \  { N } )  |  (
# `  p )  =  2 } ) )
2721, 26mp1i 13 . 2  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  ( S  e. USGraph  <->  ( E  |`  F ) : dom  ( E  |`  F )
-1-1-> { p  e.  ~P ( V  \  { N } )  |  (
# `  p )  =  2 } ) )
2818, 27mpbird 247 1  |-  ( ( G  e. USGraph  /\  N  e.  V )  ->  S  e. USGraph  )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    e/ wnel 2897   {crab 2916   _Vcvv 3200    \ cdif 3571    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   {csn 4177   <.cop 4183   dom cdm 5114   ran crn 5115    |` cres 5116   -1-1->wf1 5885   ` cfv 5888   2c2 11070   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875   UMGraph cumgr 25976   USGraph cusgr 26044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-fz 12327  df-hash 13118  df-vtx 25876  df-iedg 25877  df-uhgr 25953  df-upgr 25977  df-umgr 25978  df-usgr 26046
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator