MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  f1ssres Structured version   Visualization version   Unicode version

Theorem f1ssres 6108
Description: A function that is one-to-one is also one-to-one on some subset of its domain. (Contributed by Mario Carneiro, 17-Jan-2015.)
Assertion
Ref Expression
f1ssres  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )

Proof of Theorem f1ssres
StepHypRef Expression
1 f1f 6101 . . 3  |-  ( F : A -1-1-> B  ->  F : A --> B )
2 fssres 6070 . . 3  |-  ( ( F : A --> B  /\  C  C_  A )  -> 
( F  |`  C ) : C --> B )
31, 2sylan 488 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C --> B )
4 df-f1 5893 . . . . 5  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
54simprbi 480 . . . 4  |-  ( F : A -1-1-> B  ->  Fun  `' F )
6 funres11 5966 . . . 4  |-  ( Fun  `' F  ->  Fun  `' ( F  |`  C ) )
75, 6syl 17 . . 3  |-  ( F : A -1-1-> B  ->  Fun  `' ( F  |`  C ) )
87adantr 481 . 2  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  Fun  `' ( F  |`  C ) )
9 df-f1 5893 . 2  |-  ( ( F  |`  C ) : C -1-1-> B  <->  ( ( F  |`  C ) : C --> B  /\  Fun  `' ( F  |`  C )
) )
103, 8, 9sylanbrc 698 1  |-  ( ( F : A -1-1-> B  /\  C  C_  A )  ->  ( F  |`  C ) : C -1-1-> B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    C_ wss 3574   `'ccnv 5113    |` cres 5116   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654  df-opab 4713  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893
This theorem is referenced by:  f1ores  6151  oacomf1olem  7644  pwfseqlem5  9485  hashimarn  13227  hashf1lem2  13240  conjsubgen  17693  sylow1lem2  18014  sylow2blem1  18035  usgrres  26200
  Copyright terms: Public domain W3C validator