| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > domdifsn | Structured version Visualization version Unicode version | ||
| Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.) |
| Ref | Expression |
|---|---|
| domdifsn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdomdom 7983 |
. . . . 5
| |
| 2 | relsdom 7962 |
. . . . . . 7
| |
| 3 | 2 | brrelex2i 5159 |
. . . . . 6
|
| 4 | brdomg 7965 |
. . . . . 6
| |
| 5 | 3, 4 | syl 17 |
. . . . 5
|
| 6 | 1, 5 | mpbid 222 |
. . . 4
|
| 7 | 6 | adantr 481 |
. . 3
|
| 8 | f1f 6101 |
. . . . . . . 8
| |
| 9 | frn 6053 |
. . . . . . . 8
| |
| 10 | 8, 9 | syl 17 |
. . . . . . 7
|
| 11 | 10 | adantl 482 |
. . . . . 6
|
| 12 | sdomnen 7984 |
. . . . . . . 8
| |
| 13 | 12 | ad2antrr 762 |
. . . . . . 7
|
| 14 | vex 3203 |
. . . . . . . . . . 11
| |
| 15 | dff1o5 6146 |
. . . . . . . . . . . 12
| |
| 16 | 15 | biimpri 218 |
. . . . . . . . . . 11
|
| 17 | f1oen3g 7971 |
. . . . . . . . . . 11
| |
| 18 | 14, 16, 17 | sylancr 695 |
. . . . . . . . . 10
|
| 19 | 18 | ex 450 |
. . . . . . . . 9
|
| 20 | 19 | necon3bd 2808 |
. . . . . . . 8
|
| 21 | 20 | adantl 482 |
. . . . . . 7
|
| 22 | 13, 21 | mpd 15 |
. . . . . 6
|
| 23 | pssdifn0 3944 |
. . . . . 6
| |
| 24 | 11, 22, 23 | syl2anc 693 |
. . . . 5
|
| 25 | n0 3931 |
. . . . 5
| |
| 26 | 24, 25 | sylib 208 |
. . . 4
|
| 27 | 2 | brrelexi 5158 |
. . . . . . . . 9
|
| 28 | 27 | ad2antrr 762 |
. . . . . . . 8
|
| 29 | 3 | ad2antrr 762 |
. . . . . . . . 9
|
| 30 | difexg 4808 |
. . . . . . . . 9
| |
| 31 | 29, 30 | syl 17 |
. . . . . . . 8
|
| 32 | eldifn 3733 |
. . . . . . . . . . . . 13
| |
| 33 | disjsn 4246 |
. . . . . . . . . . . . 13
| |
| 34 | 32, 33 | sylibr 224 |
. . . . . . . . . . . 12
|
| 35 | 34 | adantl 482 |
. . . . . . . . . . 11
|
| 36 | 10 | adantr 481 |
. . . . . . . . . . . 12
|
| 37 | reldisj 4020 |
. . . . . . . . . . . 12
| |
| 38 | 36, 37 | syl 17 |
. . . . . . . . . . 11
|
| 39 | 35, 38 | mpbid 222 |
. . . . . . . . . 10
|
| 40 | f1ssr 6107 |
. . . . . . . . . 10
| |
| 41 | 39, 40 | syldan 487 |
. . . . . . . . 9
|
| 42 | 41 | adantl 482 |
. . . . . . . 8
|
| 43 | f1dom2g 7973 |
. . . . . . . 8
| |
| 44 | 28, 31, 42, 43 | syl3anc 1326 |
. . . . . . 7
|
| 45 | eldifi 3732 |
. . . . . . . . 9
| |
| 46 | 45 | ad2antll 765 |
. . . . . . . 8
|
| 47 | simplr 792 |
. . . . . . . 8
| |
| 48 | difsnen 8042 |
. . . . . . . 8
| |
| 49 | 29, 46, 47, 48 | syl3anc 1326 |
. . . . . . 7
|
| 50 | domentr 8015 |
. . . . . . 7
| |
| 51 | 44, 49, 50 | syl2anc 693 |
. . . . . 6
|
| 52 | 51 | expr 643 |
. . . . 5
|
| 53 | 52 | exlimdv 1861 |
. . . 4
|
| 54 | 26, 53 | mpd 15 |
. . 3
|
| 55 | 7, 54 | exlimddv 1863 |
. 2
|
| 56 | 1 | adantr 481 |
. . 3
|
| 57 | difsn 4328 |
. . . . 5
| |
| 58 | 57 | breq2d 4665 |
. . . 4
|
| 59 | 58 | adantl 482 |
. . 3
|
| 60 | 56, 59 | mpbird 247 |
. 2
|
| 61 | 55, 60 | pm2.61dan 832 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-suc 5729 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-1o 7560 df-er 7742 df-en 7956 df-dom 7957 df-sdom 7958 |
| This theorem is referenced by: domunsn 8110 marypha1lem 8339 |
| Copyright terms: Public domain | W3C validator |