MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  domdifsn Structured version   Visualization version   Unicode version

Theorem domdifsn 8043
Description: Dominance over a set with one element removed. (Contributed by Stefan O'Rear, 19-Feb-2015.) (Revised by Mario Carneiro, 24-Jun-2015.)
Assertion
Ref Expression
domdifsn  |-  ( A 
~<  B  ->  A  ~<_  ( B  \  { C } ) )

Proof of Theorem domdifsn
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 sdomdom 7983 . . . . 5  |-  ( A 
~<  B  ->  A  ~<_  B )
2 relsdom 7962 . . . . . . 7  |-  Rel  ~<
32brrelex2i 5159 . . . . . 6  |-  ( A 
~<  B  ->  B  e. 
_V )
4 brdomg 7965 . . . . . 6  |-  ( B  e.  _V  ->  ( A  ~<_  B  <->  E. f 
f : A -1-1-> B
) )
53, 4syl 17 . . . . 5  |-  ( A 
~<  B  ->  ( A  ~<_  B  <->  E. f  f : A -1-1-> B ) )
61, 5mpbid 222 . . . 4  |-  ( A 
~<  B  ->  E. f 
f : A -1-1-> B
)
76adantr 481 . . 3  |-  ( ( A  ~<  B  /\  C  e.  B )  ->  E. f  f : A -1-1-> B )
8 f1f 6101 . . . . . . . 8  |-  ( f : A -1-1-> B  -> 
f : A --> B )
9 frn 6053 . . . . . . . 8  |-  ( f : A --> B  ->  ran  f  C_  B )
108, 9syl 17 . . . . . . 7  |-  ( f : A -1-1-> B  ->  ran  f  C_  B )
1110adantl 482 . . . . . 6  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  f : A -1-1-> B
)  ->  ran  f  C_  B )
12 sdomnen 7984 . . . . . . . 8  |-  ( A 
~<  B  ->  -.  A  ~~  B )
1312ad2antrr 762 . . . . . . 7  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  f : A -1-1-> B
)  ->  -.  A  ~~  B )
14 vex 3203 . . . . . . . . . . 11  |-  f  e. 
_V
15 dff1o5 6146 . . . . . . . . . . . 12  |-  ( f : A -1-1-onto-> B  <->  ( f : A -1-1-> B  /\  ran  f  =  B ) )
1615biimpri 218 . . . . . . . . . . 11  |-  ( ( f : A -1-1-> B  /\  ran  f  =  B )  ->  f : A
-1-1-onto-> B )
17 f1oen3g 7971 . . . . . . . . . . 11  |-  ( ( f  e.  _V  /\  f : A -1-1-onto-> B )  ->  A  ~~  B )
1814, 16, 17sylancr 695 . . . . . . . . . 10  |-  ( ( f : A -1-1-> B  /\  ran  f  =  B )  ->  A  ~~  B )
1918ex 450 . . . . . . . . 9  |-  ( f : A -1-1-> B  -> 
( ran  f  =  B  ->  A  ~~  B
) )
2019necon3bd 2808 . . . . . . . 8  |-  ( f : A -1-1-> B  -> 
( -.  A  ~~  B  ->  ran  f  =/=  B ) )
2120adantl 482 . . . . . . 7  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  f : A -1-1-> B
)  ->  ( -.  A  ~~  B  ->  ran  f  =/=  B ) )
2213, 21mpd 15 . . . . . 6  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  f : A -1-1-> B
)  ->  ran  f  =/= 
B )
23 pssdifn0 3944 . . . . . 6  |-  ( ( ran  f  C_  B  /\  ran  f  =/=  B
)  ->  ( B  \  ran  f )  =/=  (/) )
2411, 22, 23syl2anc 693 . . . . 5  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  f : A -1-1-> B
)  ->  ( B  \  ran  f )  =/=  (/) )
25 n0 3931 . . . . 5  |-  ( ( B  \  ran  f
)  =/=  (/)  <->  E. x  x  e.  ( B  \  ran  f ) )
2624, 25sylib 208 . . . 4  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  f : A -1-1-> B
)  ->  E. x  x  e.  ( B  \  ran  f ) )
272brrelexi 5158 . . . . . . . . 9  |-  ( A 
~<  B  ->  A  e. 
_V )
2827ad2antrr 762 . . . . . . . 8  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f
) ) )  ->  A  e.  _V )
293ad2antrr 762 . . . . . . . . 9  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f
) ) )  ->  B  e.  _V )
30 difexg 4808 . . . . . . . . 9  |-  ( B  e.  _V  ->  ( B  \  { x }
)  e.  _V )
3129, 30syl 17 . . . . . . . 8  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f
) ) )  -> 
( B  \  {
x } )  e. 
_V )
32 eldifn 3733 . . . . . . . . . . . . 13  |-  ( x  e.  ( B  \  ran  f )  ->  -.  x  e.  ran  f )
33 disjsn 4246 . . . . . . . . . . . . 13  |-  ( ( ran  f  i^i  {
x } )  =  (/) 
<->  -.  x  e.  ran  f )
3432, 33sylibr 224 . . . . . . . . . . . 12  |-  ( x  e.  ( B  \  ran  f )  ->  ( ran  f  i^i  { x } )  =  (/) )
3534adantl 482 . . . . . . . . . . 11  |-  ( ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f ) )  ->  ( ran  f  i^i  { x }
)  =  (/) )
3610adantr 481 . . . . . . . . . . . 12  |-  ( ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f ) )  ->  ran  f  C_  B )
37 reldisj 4020 . . . . . . . . . . . 12  |-  ( ran  f  C_  B  ->  ( ( ran  f  i^i 
{ x } )  =  (/)  <->  ran  f  C_  ( B  \  { x }
) ) )
3836, 37syl 17 . . . . . . . . . . 11  |-  ( ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f ) )  ->  ( ( ran  f  i^i  { x } )  =  (/)  <->  ran  f  C_  ( B  \  { x } ) ) )
3935, 38mpbid 222 . . . . . . . . . 10  |-  ( ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f ) )  ->  ran  f  C_  ( B  \  { x } ) )
40 f1ssr 6107 . . . . . . . . . 10  |-  ( ( f : A -1-1-> B  /\  ran  f  C_  ( B  \  { x }
) )  ->  f : A -1-1-> ( B  \  { x } ) )
4139, 40syldan 487 . . . . . . . . 9  |-  ( ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f ) )  ->  f : A -1-1-> ( B  \  { x } ) )
4241adantl 482 . . . . . . . 8  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f
) ) )  -> 
f : A -1-1-> ( B  \  { x } ) )
43 f1dom2g 7973 . . . . . . . 8  |-  ( ( A  e.  _V  /\  ( B  \  { x } )  e.  _V  /\  f : A -1-1-> ( B  \  { x } ) )  ->  A  ~<_  ( B  \  { x } ) )
4428, 31, 42, 43syl3anc 1326 . . . . . . 7  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f
) ) )  ->  A  ~<_  ( B  \  { x } ) )
45 eldifi 3732 . . . . . . . . 9  |-  ( x  e.  ( B  \  ran  f )  ->  x  e.  B )
4645ad2antll 765 . . . . . . . 8  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f
) ) )  ->  x  e.  B )
47 simplr 792 . . . . . . . 8  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f
) ) )  ->  C  e.  B )
48 difsnen 8042 . . . . . . . 8  |-  ( ( B  e.  _V  /\  x  e.  B  /\  C  e.  B )  ->  ( B  \  {
x } )  ~~  ( B  \  { C } ) )
4929, 46, 47, 48syl3anc 1326 . . . . . . 7  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f
) ) )  -> 
( B  \  {
x } )  ~~  ( B  \  { C } ) )
50 domentr 8015 . . . . . . 7  |-  ( ( A  ~<_  ( B  \  { x } )  /\  ( B  \  { x } ) 
~~  ( B  \  { C } ) )  ->  A  ~<_  ( B 
\  { C }
) )
5144, 49, 50syl2anc 693 . . . . . 6  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  ( f : A -1-1-> B  /\  x  e.  ( B  \  ran  f
) ) )  ->  A  ~<_  ( B  \  { C } ) )
5251expr 643 . . . . 5  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  f : A -1-1-> B
)  ->  ( x  e.  ( B  \  ran  f )  ->  A  ~<_  ( B  \  { C } ) ) )
5352exlimdv 1861 . . . 4  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  f : A -1-1-> B
)  ->  ( E. x  x  e.  ( B  \  ran  f )  ->  A  ~<_  ( B 
\  { C }
) ) )
5426, 53mpd 15 . . 3  |-  ( ( ( A  ~<  B  /\  C  e.  B )  /\  f : A -1-1-> B
)  ->  A  ~<_  ( B 
\  { C }
) )
557, 54exlimddv 1863 . 2  |-  ( ( A  ~<  B  /\  C  e.  B )  ->  A  ~<_  ( B  \  { C } ) )
561adantr 481 . . 3  |-  ( ( A  ~<  B  /\  -.  C  e.  B
)  ->  A  ~<_  B )
57 difsn 4328 . . . . 5  |-  ( -.  C  e.  B  -> 
( B  \  { C } )  =  B )
5857breq2d 4665 . . . 4  |-  ( -.  C  e.  B  -> 
( A  ~<_  ( B 
\  { C }
)  <->  A  ~<_  B )
)
5958adantl 482 . . 3  |-  ( ( A  ~<  B  /\  -.  C  e.  B
)  ->  ( A  ~<_  ( B  \  { C } )  <->  A  ~<_  B ) )
6056, 59mpbird 247 . 2  |-  ( ( A  ~<  B  /\  -.  C  e.  B
)  ->  A  ~<_  ( B 
\  { C }
) )
6155, 60pm2.61dan 832 1  |-  ( A 
~<  B  ->  A  ~<_  ( B  \  { C } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   class class class wbr 4653   ran crn 5115   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887    ~~ cen 7952    ~<_ cdom 7953    ~< csdm 7954
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-suc 5729  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-1o 7560  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958
This theorem is referenced by:  domunsn  8110  marypha1lem  8339
  Copyright terms: Public domain W3C validator