| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > fiinfi | Structured version Visualization version Unicode version | ||
| Description: If two classes have the finite intersection property, then so does their intersection. (Contributed by Richard Penner, 1-Jan-2020.) |
| Ref | Expression |
|---|---|
| fiinfi.a |
|
| fiinfi.b |
|
| fiinfi.c |
|
| Ref | Expression |
|---|---|
| fiinfi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fiinfi.a |
. . . . . . 7
| |
| 2 | elinel1 3799 |
. . . . . . . . 9
| |
| 3 | elinel1 3799 |
. . . . . . . . . . 11
| |
| 4 | 3 | imim1i 63 |
. . . . . . . . . 10
|
| 5 | 4 | ralimi2 2949 |
. . . . . . . . 9
|
| 6 | 2, 5 | imim12i 62 |
. . . . . . . 8
|
| 7 | 6 | ralimi2 2949 |
. . . . . . 7
|
| 8 | 1, 7 | syl 17 |
. . . . . 6
|
| 9 | fiinfi.b |
. . . . . . 7
| |
| 10 | elinel2 3800 |
. . . . . . . . 9
| |
| 11 | elinel2 3800 |
. . . . . . . . . . 11
| |
| 12 | 11 | imim1i 63 |
. . . . . . . . . 10
|
| 13 | 12 | ralimi2 2949 |
. . . . . . . . 9
|
| 14 | 10, 13 | imim12i 62 |
. . . . . . . 8
|
| 15 | 14 | ralimi2 2949 |
. . . . . . 7
|
| 16 | 9, 15 | syl 17 |
. . . . . 6
|
| 17 | r19.26-2 3065 |
. . . . . 6
| |
| 18 | 8, 16, 17 | sylanbrc 698 |
. . . . 5
|
| 19 | elin 3796 |
. . . . . 6
| |
| 20 | 19 | 2ralbii 2981 |
. . . . 5
|
| 21 | 18, 20 | sylibr 224 |
. . . 4
|
| 22 | fiinfi.c |
. . . . . . 7
| |
| 23 | 22 | eleq2d 2687 |
. . . . . 6
|
| 24 | 23 | ralbidv 2986 |
. . . . 5
|
| 25 | 24 | ralbidv 2986 |
. . . 4
|
| 26 | 21, 25 | mpbird 247 |
. . 3
|
| 27 | 22 | raleqdv 3144 |
. . . 4
|
| 28 | 27 | ralbidv 2986 |
. . 3
|
| 29 | 26, 28 | mpbird 247 |
. 2
|
| 30 | 22 | raleqdv 3144 |
. 2
|
| 31 | 29, 30 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-in 3581 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |