| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin23lem7 | Structured version Visualization version Unicode version | ||
| Description: Lemma for isfin2-2 9141. The componentwise complement of a nonempty collection of sets is nonempty. (Contributed by Stefan O'Rear, 31-Oct-2014.) (Revised by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| fin23lem7 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0 3931 |
. . . 4
| |
| 2 | difss 3737 |
. . . . . . . 8
| |
| 3 | elpw2g 4827 |
. . . . . . . . 9
| |
| 4 | 3 | ad2antrr 762 |
. . . . . . . 8
|
| 5 | 2, 4 | mpbiri 248 |
. . . . . . 7
|
| 6 | simpr 477 |
. . . . . . . . . . 11
| |
| 7 | 6 | sselda 3603 |
. . . . . . . . . 10
|
| 8 | 7 | elpwid 4170 |
. . . . . . . . 9
|
| 9 | dfss4 3858 |
. . . . . . . . 9
| |
| 10 | 8, 9 | sylib 208 |
. . . . . . . 8
|
| 11 | simpr 477 |
. . . . . . . 8
| |
| 12 | 10, 11 | eqeltrd 2701 |
. . . . . . 7
|
| 13 | difeq2 3722 |
. . . . . . . . 9
| |
| 14 | 13 | eleq1d 2686 |
. . . . . . . 8
|
| 15 | 14 | rspcev 3309 |
. . . . . . 7
|
| 16 | 5, 12, 15 | syl2anc 693 |
. . . . . 6
|
| 17 | 16 | ex 450 |
. . . . 5
|
| 18 | 17 | exlimdv 1861 |
. . . 4
|
| 19 | 1, 18 | syl5bi 232 |
. . 3
|
| 20 | 19 | 3impia 1261 |
. 2
|
| 21 | rabn0 3958 |
. 2
| |
| 22 | 20, 21 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-pw 4160 |
| This theorem is referenced by: fin2i2 9140 isfin2-2 9141 |
| Copyright terms: Public domain | W3C validator |