| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fin2i2 | Structured version Visualization version Unicode version | ||
| Description: A II-finite set contains minimal elements for every nonempty chain. (Contributed by Mario Carneiro, 16-May-2015.) |
| Ref | Expression |
|---|---|
| fin2i2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simplr 792 |
. . 3
| |
| 2 | simpll 790 |
. . . . 5
| |
| 3 | ssrab2 3687 |
. . . . . 6
| |
| 4 | 3 | a1i 11 |
. . . . 5
|
| 5 | simprl 794 |
. . . . . 6
| |
| 6 | fin23lem7 9138 |
. . . . . 6
| |
| 7 | 2, 1, 5, 6 | syl3anc 1326 |
. . . . 5
|
| 8 | sorpsscmpl 6948 |
. . . . . 6
| |
| 9 | 8 | ad2antll 765 |
. . . . 5
|
| 10 | fin2i 9117 |
. . . . 5
| |
| 11 | 2, 4, 7, 9, 10 | syl22anc 1327 |
. . . 4
|
| 12 | sorpssuni 6946 |
. . . . 5
| |
| 13 | 9, 12 | syl 17 |
. . . 4
|
| 14 | 11, 13 | mpbird 247 |
. . 3
|
| 15 | psseq2 3695 |
. . . 4
| |
| 16 | psseq2 3695 |
. . . 4
| |
| 17 | pssdifcom2 4055 |
. . . 4
| |
| 18 | 15, 16, 17 | fin23lem11 9139 |
. . 3
|
| 19 | 1, 14, 18 | sylc 65 |
. 2
|
| 20 | sorpssint 6947 |
. . 3
| |
| 21 | 20 | ad2antll 765 |
. 2
|
| 22 | 19, 21 | mpbid 222 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-int 4476 df-br 4654 df-opab 4713 df-po 5035 df-so 5036 df-xp 5120 df-rel 5121 df-rpss 6937 df-fin2 9108 |
| This theorem is referenced by: isfin2-2 9141 fin23lem40 9173 fin2so 33396 |
| Copyright terms: Public domain | W3C validator |