MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsneqop Structured version   Visualization version   Unicode version

Theorem funsneqop 6418
Description: A singleton of an ordered pair is an ordered pair if the components are equal. (Contributed by AV, 24-Sep-2020.)
Hypotheses
Ref Expression
funsndifnop.a  |-  A  e. 
_V
funsndifnop.b  |-  B  e. 
_V
funsndifnop.g  |-  G  =  { <. A ,  B >. }
Assertion
Ref Expression
funsneqop  |-  ( A  =  B  ->  G  e.  ( _V  X.  _V ) )

Proof of Theorem funsneqop
StepHypRef Expression
1 funsndifnop.a . . 3  |-  A  e. 
_V
2 funsndifnop.b . . 3  |-  B  e. 
_V
3 funsndifnop.g . . 3  |-  G  =  { <. A ,  B >. }
41, 2, 3funsneqopsn 6417 . 2  |-  ( A  =  B  ->  G  =  <. { A } ,  { A } >. )
5 snex 4908 . . 3  |-  { A }  e.  _V
65, 5opelvv 5166 . 2  |-  <. { A } ,  { A } >.  e.  ( _V 
X.  _V )
74, 6syl6eqel 2709 1  |-  ( A  =  B  ->  G  e.  ( _V  X.  _V ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    = wceq 1483    e. wcel 1990   _Vcvv 3200   {csn 4177   <.cop 4183    X. cxp 5112
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-opab 4713  df-xp 5120
This theorem is referenced by:  funsneqopb  6419
  Copyright terms: Public domain W3C validator