| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > hbsb2 | Structured version Visualization version GIF version | ||
| Description: Bound-variable hypothesis builder for substitution. (Contributed by NM, 14-May-1993.) |
| Ref | Expression |
|---|---|
| hbsb2 | ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sb4 2356 | . 2 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥(𝑥 = 𝑦 → 𝜑))) | |
| 2 | sb2 2352 | . . 3 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → [𝑦 / 𝑥]𝜑) | |
| 3 | 2 | axc4i 2131 | . 2 ⊢ (∀𝑥(𝑥 = 𝑦 → 𝜑) → ∀𝑥[𝑦 / 𝑥]𝜑) |
| 4 | 1, 3 | syl6 35 | 1 ⊢ (¬ ∀𝑥 𝑥 = 𝑦 → ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∀wal 1481 [wsb 1880 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: nfsb2 2360 hbs1 2436 |
| Copyright terms: Public domain | W3C validator |