| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sb2 | Structured version Visualization version Unicode version | ||
| Description: One direction of a simplified definition of substitution. The converse requires either a dv condition (sb6 2429) or a non-freeness hypothesis (sb6f 2385). (Contributed by NM, 13-May-1993.) |
| Ref | Expression |
|---|---|
| sb2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sp 2053 |
. 2
| |
| 2 | equs4 2290 |
. 2
| |
| 3 | df-sb 1881 |
. 2
| |
| 4 | 1, 2, 3 | sylanbrc 698 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 df-sb 1881 |
| This theorem is referenced by: stdpc4 2353 sb3 2355 sb4b 2358 hbsb2 2359 hbsb2a 2361 hbsb2e 2363 equsb1 2368 equsb2 2369 dfsb2 2373 sbequi 2375 sb6f 2385 sbi1 2392 sb6 2429 iota4 5869 wl-lem-moexsb 33350 sbeqal1 38598 |
| Copyright terms: Public domain | W3C validator |