| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > hlsuprexch | Structured version Visualization version Unicode version | ||
| Description: A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011.) |
| Ref | Expression |
|---|---|
| hlsuprexch.b |
|
| hlsuprexch.l |
|
| hlsuprexch.j |
|
| hlsuprexch.a |
|
| Ref | Expression |
|---|---|
| hlsuprexch |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hlsuprexch.b |
. . . . 5
| |
| 2 | hlsuprexch.l |
. . . . 5
| |
| 3 | eqid 2622 |
. . . . 5
| |
| 4 | hlsuprexch.j |
. . . . 5
| |
| 5 | eqid 2622 |
. . . . 5
| |
| 6 | eqid 2622 |
. . . . 5
| |
| 7 | hlsuprexch.a |
. . . . 5
| |
| 8 | 1, 2, 3, 4, 5, 6, 7 | ishlat2 34640 |
. . . 4
|
| 9 | simprl 794 |
. . . 4
| |
| 10 | 8, 9 | sylbi 207 |
. . 3
|
| 11 | neeq1 2856 |
. . . . . 6
| |
| 12 | neeq2 2857 |
. . . . . . . 8
| |
| 13 | oveq1 6657 |
. . . . . . . . 9
| |
| 14 | 13 | breq2d 4665 |
. . . . . . . 8
|
| 15 | 12, 14 | 3anbi13d 1401 |
. . . . . . 7
|
| 16 | 15 | rexbidv 3052 |
. . . . . 6
|
| 17 | 11, 16 | imbi12d 334 |
. . . . 5
|
| 18 | breq1 4656 |
. . . . . . . . 9
| |
| 19 | 18 | notbid 308 |
. . . . . . . 8
|
| 20 | breq1 4656 |
. . . . . . . 8
| |
| 21 | 19, 20 | anbi12d 747 |
. . . . . . 7
|
| 22 | oveq2 6658 |
. . . . . . . 8
| |
| 23 | 22 | breq2d 4665 |
. . . . . . 7
|
| 24 | 21, 23 | imbi12d 334 |
. . . . . 6
|
| 25 | 24 | ralbidv 2986 |
. . . . 5
|
| 26 | 17, 25 | anbi12d 747 |
. . . 4
|
| 27 | neeq2 2857 |
. . . . . 6
| |
| 28 | neeq2 2857 |
. . . . . . . 8
| |
| 29 | oveq2 6658 |
. . . . . . . . 9
| |
| 30 | 29 | breq2d 4665 |
. . . . . . . 8
|
| 31 | 28, 30 | 3anbi23d 1402 |
. . . . . . 7
|
| 32 | 31 | rexbidv 3052 |
. . . . . 6
|
| 33 | 27, 32 | imbi12d 334 |
. . . . 5
|
| 34 | oveq2 6658 |
. . . . . . . . 9
| |
| 35 | 34 | breq2d 4665 |
. . . . . . . 8
|
| 36 | 35 | anbi2d 740 |
. . . . . . 7
|
| 37 | breq1 4656 |
. . . . . . 7
| |
| 38 | 36, 37 | imbi12d 334 |
. . . . . 6
|
| 39 | 38 | ralbidv 2986 |
. . . . 5
|
| 40 | 33, 39 | anbi12d 747 |
. . . 4
|
| 41 | 26, 40 | rspc2v 3322 |
. . 3
|
| 42 | 10, 41 | mpan9 486 |
. 2
|
| 43 | 42 | 3impb 1260 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-cvlat 34609 df-hlat 34638 |
| This theorem is referenced by: hlsupr 34672 |
| Copyright terms: Public domain | W3C validator |