Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hlsuprexch Structured version   Visualization version   Unicode version

Theorem hlsuprexch 34667
Description: A Hilbert lattice has the superposition and exchange properties. (Contributed by NM, 13-Nov-2011.)
Hypotheses
Ref Expression
hlsuprexch.b  |-  B  =  ( Base `  K
)
hlsuprexch.l  |-  .<_  =  ( le `  K )
hlsuprexch.j  |-  .\/  =  ( join `  K )
hlsuprexch.a  |-  A  =  ( Atoms `  K )
Assertion
Ref Expression
hlsuprexch  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( ( P  =/= 
Q  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/= 
Q  /\  z  .<_  ( P  .\/  Q ) ) )  /\  A. z  e.  B  (
( -.  P  .<_  z  /\  P  .<_  ( z 
.\/  Q ) )  ->  Q  .<_  ( z 
.\/  P ) ) ) )
Distinct variable groups:    z, A    z, B    z, K    z, P    z, Q
Allowed substitution hints:    .\/ ( z)    .<_ ( z)

Proof of Theorem hlsuprexch
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlsuprexch.b . . . . 5  |-  B  =  ( Base `  K
)
2 hlsuprexch.l . . . . 5  |-  .<_  =  ( le `  K )
3 eqid 2622 . . . . 5  |-  ( lt
`  K )  =  ( lt `  K
)
4 hlsuprexch.j . . . . 5  |-  .\/  =  ( join `  K )
5 eqid 2622 . . . . 5  |-  ( 0.
`  K )  =  ( 0. `  K
)
6 eqid 2622 . . . . 5  |-  ( 1.
`  K )  =  ( 1. `  K
)
7 hlsuprexch.a . . . . 5  |-  A  =  ( Atoms `  K )
81, 2, 3, 4, 5, 6, 7ishlat2 34640 . . . 4  |-  ( K  e.  HL  <->  ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat
)  /\  ( A. x  e.  A  A. y  e.  A  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( ( ( 0. `  K ) ( lt `  K
) x  /\  x
( lt `  K
) y )  /\  ( y ( lt
`  K ) z  /\  z ( lt
`  K ) ( 1. `  K ) ) ) ) ) )
9 simprl 794 . . . 4  |-  ( ( ( K  e.  OML  /\  K  e.  CLat  /\  K  e.  AtLat )  /\  ( A. x  e.  A  A. y  e.  A  ( ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) )  /\  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  /\  E. x  e.  B  E. y  e.  B  E. z  e.  B  ( (
( 0. `  K
) ( lt `  K ) x  /\  x ( lt `  K ) y )  /\  ( y ( lt `  K ) z  /\  z ( lt `  K ) ( 1. `  K
) ) ) ) )  ->  A. x  e.  A  A. y  e.  A  ( (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
108, 9sylbi 207 . . 3  |-  ( K  e.  HL  ->  A. x  e.  A  A. y  e.  A  ( (
x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  /\  A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  x ) ) ) )
11 neeq1 2856 . . . . . 6  |-  ( x  =  P  ->  (
x  =/=  y  <->  P  =/=  y ) )
12 neeq2 2857 . . . . . . . 8  |-  ( x  =  P  ->  (
z  =/=  x  <->  z  =/=  P ) )
13 oveq1 6657 . . . . . . . . 9  |-  ( x  =  P  ->  (
x  .\/  y )  =  ( P  .\/  y ) )
1413breq2d 4665 . . . . . . . 8  |-  ( x  =  P  ->  (
z  .<_  ( x  .\/  y )  <->  z  .<_  ( P  .\/  y ) ) )
1512, 143anbi13d 1401 . . . . . . 7  |-  ( x  =  P  ->  (
( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) )  <-> 
( z  =/=  P  /\  z  =/=  y  /\  z  .<_  ( P 
.\/  y ) ) ) )
1615rexbidv 3052 . . . . . 6  |-  ( x  =  P  ->  ( E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) )  <->  E. z  e.  A  ( z  =/=  P  /\  z  =/=  y  /\  z  .<_  ( P 
.\/  y ) ) ) )
1711, 16imbi12d 334 . . . . 5  |-  ( x  =  P  ->  (
( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x 
.\/  y ) ) )  <->  ( P  =/=  y  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/=  y  /\  z  .<_  ( P  .\/  y ) ) ) ) )
18 breq1 4656 . . . . . . . . 9  |-  ( x  =  P  ->  (
x  .<_  z  <->  P  .<_  z ) )
1918notbid 308 . . . . . . . 8  |-  ( x  =  P  ->  ( -.  x  .<_  z  <->  -.  P  .<_  z ) )
20 breq1 4656 . . . . . . . 8  |-  ( x  =  P  ->  (
x  .<_  ( z  .\/  y )  <->  P  .<_  ( z  .\/  y ) ) )
2119, 20anbi12d 747 . . . . . . 7  |-  ( x  =  P  ->  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  <-> 
( -.  P  .<_  z  /\  P  .<_  ( z 
.\/  y ) ) ) )
22 oveq2 6658 . . . . . . . 8  |-  ( x  =  P  ->  (
z  .\/  x )  =  ( z  .\/  P ) )
2322breq2d 4665 . . . . . . 7  |-  ( x  =  P  ->  (
y  .<_  ( z  .\/  x )  <->  y  .<_  ( z  .\/  P ) ) )
2421, 23imbi12d 334 . . . . . 6  |-  ( x  =  P  ->  (
( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  <->  ( ( -.  P  .<_  z  /\  P  .<_  ( z  .\/  y ) )  -> 
y  .<_  ( z  .\/  P ) ) ) )
2524ralbidv 2986 . . . . 5  |-  ( x  =  P  ->  ( A. z  e.  B  ( ( -.  x  .<_  z  /\  x  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  x ) )  <->  A. z  e.  B  ( ( -.  P  .<_  z  /\  P  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  P ) ) ) )
2617, 25anbi12d 747 . . . 4  |-  ( x  =  P  ->  (
( ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) )  /\  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  <->  ( ( P  =/=  y  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/=  y  /\  z  .<_  ( P  .\/  y ) ) )  /\  A. z  e.  B  (
( -.  P  .<_  z  /\  P  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  P ) ) ) ) )
27 neeq2 2857 . . . . . 6  |-  ( y  =  Q  ->  ( P  =/=  y  <->  P  =/=  Q ) )
28 neeq2 2857 . . . . . . . 8  |-  ( y  =  Q  ->  (
z  =/=  y  <->  z  =/=  Q ) )
29 oveq2 6658 . . . . . . . . 9  |-  ( y  =  Q  ->  ( P  .\/  y )  =  ( P  .\/  Q
) )
3029breq2d 4665 . . . . . . . 8  |-  ( y  =  Q  ->  (
z  .<_  ( P  .\/  y )  <->  z  .<_  ( P  .\/  Q ) ) )
3128, 303anbi23d 1402 . . . . . . 7  |-  ( y  =  Q  ->  (
( z  =/=  P  /\  z  =/=  y  /\  z  .<_  ( P 
.\/  y ) )  <-> 
( z  =/=  P  /\  z  =/=  Q  /\  z  .<_  ( P 
.\/  Q ) ) ) )
3231rexbidv 3052 . . . . . 6  |-  ( y  =  Q  ->  ( E. z  e.  A  ( z  =/=  P  /\  z  =/=  y  /\  z  .<_  ( P 
.\/  y ) )  <->  E. z  e.  A  ( z  =/=  P  /\  z  =/=  Q  /\  z  .<_  ( P 
.\/  Q ) ) ) )
3327, 32imbi12d 334 . . . . 5  |-  ( y  =  Q  ->  (
( P  =/=  y  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/=  y  /\  z  .<_  ( P 
.\/  y ) ) )  <->  ( P  =/= 
Q  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/= 
Q  /\  z  .<_  ( P  .\/  Q ) ) ) ) )
34 oveq2 6658 . . . . . . . . 9  |-  ( y  =  Q  ->  (
z  .\/  y )  =  ( z  .\/  Q ) )
3534breq2d 4665 . . . . . . . 8  |-  ( y  =  Q  ->  ( P  .<_  ( z  .\/  y )  <->  P  .<_  ( z  .\/  Q ) ) )
3635anbi2d 740 . . . . . . 7  |-  ( y  =  Q  ->  (
( -.  P  .<_  z  /\  P  .<_  ( z 
.\/  y ) )  <-> 
( -.  P  .<_  z  /\  P  .<_  ( z 
.\/  Q ) ) ) )
37 breq1 4656 . . . . . . 7  |-  ( y  =  Q  ->  (
y  .<_  ( z  .\/  P )  <->  Q  .<_  ( z 
.\/  P ) ) )
3836, 37imbi12d 334 . . . . . 6  |-  ( y  =  Q  ->  (
( ( -.  P  .<_  z  /\  P  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  P ) )  <->  ( ( -.  P  .<_  z  /\  P  .<_  ( z  .\/  Q ) )  ->  Q  .<_  ( z  .\/  P
) ) ) )
3938ralbidv 2986 . . . . 5  |-  ( y  =  Q  ->  ( A. z  e.  B  ( ( -.  P  .<_  z  /\  P  .<_  ( z  .\/  y ) )  ->  y  .<_  ( z  .\/  P ) )  <->  A. z  e.  B  ( ( -.  P  .<_  z  /\  P  .<_  ( z  .\/  Q ) )  ->  Q  .<_  ( z  .\/  P ) ) ) )
4033, 39anbi12d 747 . . . 4  |-  ( y  =  Q  ->  (
( ( P  =/=  y  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/=  y  /\  z  .<_  ( P  .\/  y ) ) )  /\  A. z  e.  B  (
( -.  P  .<_  z  /\  P  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  P ) ) )  <->  ( ( P  =/=  Q  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/= 
Q  /\  z  .<_  ( P  .\/  Q ) ) )  /\  A. z  e.  B  (
( -.  P  .<_  z  /\  P  .<_  ( z 
.\/  Q ) )  ->  Q  .<_  ( z 
.\/  P ) ) ) ) )
4126, 40rspc2v 3322 . . 3  |-  ( ( P  e.  A  /\  Q  e.  A )  ->  ( A. x  e.  A  A. y  e.  A  ( ( x  =/=  y  ->  E. z  e.  A  ( z  =/=  x  /\  z  =/=  y  /\  z  .<_  ( x  .\/  y ) ) )  /\  A. z  e.  B  (
( -.  x  .<_  z  /\  x  .<_  ( z 
.\/  y ) )  ->  y  .<_  ( z 
.\/  x ) ) )  ->  ( ( P  =/=  Q  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/= 
Q  /\  z  .<_  ( P  .\/  Q ) ) )  /\  A. z  e.  B  (
( -.  P  .<_  z  /\  P  .<_  ( z 
.\/  Q ) )  ->  Q  .<_  ( z 
.\/  P ) ) ) ) )
4210, 41mpan9 486 . 2  |-  ( ( K  e.  HL  /\  ( P  e.  A  /\  Q  e.  A
) )  ->  (
( P  =/=  Q  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/=  Q  /\  z  .<_  ( P 
.\/  Q ) ) )  /\  A. z  e.  B  ( ( -.  P  .<_  z  /\  P  .<_  ( z  .\/  Q ) )  ->  Q  .<_  ( z  .\/  P
) ) ) )
43423impb 1260 1  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( ( P  =/= 
Q  ->  E. z  e.  A  ( z  =/=  P  /\  z  =/= 
Q  /\  z  .<_  ( P  .\/  Q ) ) )  /\  A. z  e.  B  (
( -.  P  .<_  z  /\  P  .<_  ( z 
.\/  Q ) )  ->  Q  .<_  ( z 
.\/  P ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   ltcplt 16941   joincjn 16944   0.cp0 17037   1.cp1 17038   CLatccla 17107   OMLcoml 34462   Atomscatm 34550   AtLatcal 34551   HLchlt 34637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-cvlat 34609  df-hlat 34638
This theorem is referenced by:  hlsupr  34672
  Copyright terms: Public domain W3C validator