![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 3anbi13d | Structured version Visualization version Unicode version |
Description: Deduction conjoining and adding a conjunct to equivalences. (Contributed by NM, 8-Sep-2006.) |
Ref | Expression |
---|---|
3anbi12d.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3anbi12d.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
3anbi13d |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3anbi12d.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | biidd 252 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 3anbi12d.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3anbi123d 1399 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: 3anbi3d 1405 ax12wdemo 2012 f1dom3el3dif 6526 wfrlem1 7414 wfrlem3a 7417 wfrlem15 7429 cofsmo 9091 axdc3lem3 9274 axdc3lem4 9275 iscatd2 16342 psgnunilem1 17913 nn0gsumfz 18380 opprsubrg 18801 lsspropd 19017 mdetunilem3 20420 mdetunilem9 20426 smadiadetr 20481 lmres 21104 cnhaus 21158 regsep2 21180 dishaus 21186 ordthauslem 21187 nconnsubb 21226 pthaus 21441 txhaus 21450 xkohaus 21456 regr1lem 21542 ustval 22006 methaus 22325 metnrmlem3 22664 pmltpclem1 23217 axtgeucl 25371 iscgrad 25703 dfcgra2 25721 f1otrge 25752 axeuclidlem 25842 umgrvad2edg 26105 elwspths2spth 26862 upgr3v3e3cycl 27040 upgr4cycl4dv4e 27045 vdgn1frgrv2 27160 ex-opab 27289 isnvlem 27465 ajval 27717 adjeu 28748 adjval 28749 adj1 28792 adjeq 28794 cnlnssadj 28939 br8d 29422 lt2addrd 29516 xlt2addrd 29523 measval 30261 br8 31646 br6 31647 br4 31648 brsslt 31900 brcgr3 32153 brsegle 32215 fvray 32248 linedegen 32250 fvline 32251 poimirlem28 33437 isopos 34467 hlsuprexch 34667 2llnjN 34853 2lplnj 34906 cdlemk42 36229 zindbi 37511 jm2.27 37575 stoweidlem43 40260 fourierdlem42 40366 |
Copyright terms: Public domain | W3C validator |