![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > orbi12i | Structured version Visualization version Unicode version |
Description: Infer the disjunction of two equivalences. (Contributed by NM, 3-Jan-1993.) |
Ref | Expression |
---|---|
orbi12i.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
orbi12i.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
orbi12i |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | orbi12i.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | orbi2i 541 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | orbi12i.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 3 | orbi1i 542 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 2, 4 | bitri 264 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-or 385 |
This theorem is referenced by: pm4.78 606 andir 912 anddi 914 cases 992 dfbi3OLD 995 4exmidOLD 998 3orbi123i 1252 3or6 1410 cadcoma 1551 neorian 2888 sspsstri 3709 rexun 3793 elsymdif 3849 symdif2 3852 indi 3873 unab 3894 dfnf5 3952 inundif 4046 dfpr2 4195 ssunsn 4360 ssunpr 4365 sspr 4366 sstp 4367 prneimg 4388 prnebg 4389 pwpr 4430 pwtp 4431 unipr 4449 uniun 4456 iunun 4604 iunxun 4605 brun 4703 zfpair 4904 opthneg 4950 propeqop 4970 pwunss 5019 opthprc 5167 xpeq0 5554 difxp 5558 ordtri2or3 5824 ftpg 6423 ordunpr 7026 mpt2xneldm 7338 tpostpos 7372 oarec 7642 brdom2 7985 modom 8161 dfsup2 8350 wemapsolem 8455 leweon 8834 kmlem16 8987 fin23lem40 9173 axpre-lttri 9986 nn0n0n1ge2b 11359 elnn0z 11390 fz0 12356 sqeqori 12976 hashtpg 13267 cbvsum 14425 cbvprod 14645 rpnnen2lem12 14954 lcmfpr 15340 pythagtriplem2 15522 pythagtrip 15539 mreexexd 16308 mreexexdOLD 16309 cnfldfunALT 19759 ppttop 20811 fixufil 21726 alexsubALTlem2 21852 alexsubALTlem3 21853 alexsubALTlem4 21854 dyaddisj 23364 ofpreima2 29466 odutos 29663 trleile 29666 smatrcl 29862 ordtconnlem1 29970 sitgaddlemb 30410 quad3 31564 nepss 31599 dfso2 31644 dfon2lem4 31691 dfon2lem5 31692 dfon3 31999 brcup 32046 dfrdg4 32058 hfun 32285 bj-dfifc2 32564 bj-eltag 32965 bj-projun 32982 bj-ismooredr2 33065 poimirlem22 33431 poimirlem31 33440 poimirlem32 33441 ispridl2 33837 smprngopr 33851 isdmn3 33873 sbcori 33911 tsbi4 33943 4atlem3 34882 elpadd 35085 paddasslem17 35122 cdlemg31b0N 35982 cdlemg31b0a 35983 cdlemh 36105 jm2.23 37563 ifpim123g 37845 ifpananb 37851 rp-isfinite6 37864 iunrelexp0 37994 clsk1indlem3 38341 aovov0bi 41276 zeoALTV 41581 divgcdoddALTV 41593 |
Copyright terms: Public domain | W3C validator |