MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iinrab Structured version   Visualization version   Unicode version

Theorem iinrab 4582
Description: Indexed intersection of a restricted class builder. (Contributed by NM, 6-Dec-2011.)
Assertion
Ref Expression
iinrab  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  A. x  e.  A  ph } )
Distinct variable groups:    y, A, x    x, B
Allowed substitution hints:    ph( x, y)    B( y)

Proof of Theorem iinrab
StepHypRef Expression
1 r19.28zv 4066 . . 3  |-  ( A  =/=  (/)  ->  ( A. x  e.  A  (
y  e.  B  /\  ph )  <->  ( y  e.  B  /\  A. x  e.  A  ph ) ) )
21abbidv 2741 . 2  |-  ( A  =/=  (/)  ->  { y  |  A. x  e.  A  ( y  e.  B  /\  ph ) }  =  { y  |  ( y  e.  B  /\  A. x  e.  A  ph ) } )
3 df-rab 2921 . . . . 5  |-  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) }
43a1i 11 . . . 4  |-  ( x  e.  A  ->  { y  e.  B  |  ph }  =  { y  |  ( y  e.  B  /\  ph ) } )
54iineq2i 4540 . . 3  |-  |^|_ x  e.  A  { y  e.  B  |  ph }  =  |^|_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }
6 iinab 4581 . . 3  |-  |^|_ x  e.  A  { y  |  ( y  e.  B  /\  ph ) }  =  { y  |  A. x  e.  A  ( y  e.  B  /\  ph ) }
75, 6eqtri 2644 . 2  |-  |^|_ x  e.  A  { y  e.  B  |  ph }  =  { y  |  A. x  e.  A  (
y  e.  B  /\  ph ) }
8 df-rab 2921 . 2  |-  { y  e.  B  |  A. x  e.  A  ph }  =  { y  |  ( y  e.  B  /\  A. x  e.  A  ph ) }
92, 7, 83eqtr4g 2681 1  |-  ( A  =/=  (/)  ->  |^|_ x  e.  A  { y  e.  B  |  ph }  =  { y  e.  B  |  A. x  e.  A  ph } )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   {crab 2916   (/)c0 3915   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-nul 3916  df-iin 4523
This theorem is referenced by:  iinrab2  4583  riinrab  4596  ubthlem1  27726  pmapglbx  35055  preimageiingt  40930  preimaleiinlt  40931
  Copyright terms: Public domain W3C validator