MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  riinrab Structured version   Visualization version   Unicode version

Theorem riinrab 4596
Description: Relative intersection of a relative abstraction. (Contributed by Stefan O'Rear, 3-Apr-2015.)
Assertion
Ref Expression
riinrab  |-  ( A  i^i  |^|_ x  e.  X  { y  e.  A  |  ph } )  =  { y  e.  A  |  A. x  e.  X  ph }
Distinct variable groups:    x, A, y    x, X, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem riinrab
StepHypRef Expression
1 riin0 4594 . . 3  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  { y  e.  A  |  ph } )  =  A )
2 rzal 4073 . . . . 5  |-  ( X  =  (/)  ->  A. x  e.  X  ph )
32ralrimivw 2967 . . . 4  |-  ( X  =  (/)  ->  A. y  e.  A  A. x  e.  X  ph )
4 rabid2 3118 . . . 4  |-  ( A  =  { y  e.  A  |  A. x  e.  X  ph }  <->  A. y  e.  A  A. x  e.  X  ph )
53, 4sylibr 224 . . 3  |-  ( X  =  (/)  ->  A  =  { y  e.  A  |  A. x  e.  X  ph } )
61, 5eqtrd 2656 . 2  |-  ( X  =  (/)  ->  ( A  i^i  |^|_ x  e.  X  { y  e.  A  |  ph } )  =  { y  e.  A  |  A. x  e.  X  ph } )
7 ssrab2 3687 . . . . 5  |-  { y  e.  A  |  ph }  C_  A
87rgenw 2924 . . . 4  |-  A. x  e.  X  { y  e.  A  |  ph }  C_  A
9 riinn0 4595 . . . 4  |-  ( ( A. x  e.  X  { y  e.  A  |  ph }  C_  A  /\  X  =/=  (/) )  -> 
( A  i^i  |^|_ x  e.  X  { y  e.  A  |  ph } )  =  |^|_ x  e.  X  { y  e.  A  |  ph } )
108, 9mpan 706 . . 3  |-  ( X  =/=  (/)  ->  ( A  i^i  |^|_ x  e.  X  { y  e.  A  |  ph } )  = 
|^|_ x  e.  X  { y  e.  A  |  ph } )
11 iinrab 4582 . . 3  |-  ( X  =/=  (/)  ->  |^|_ x  e.  X  { y  e.  A  |  ph }  =  { y  e.  A  |  A. x  e.  X  ph } )
1210, 11eqtrd 2656 . 2  |-  ( X  =/=  (/)  ->  ( A  i^i  |^|_ x  e.  X  { y  e.  A  |  ph } )  =  { y  e.  A  |  A. x  e.  X  ph } )
136, 12pm2.61ine 2877 1  |-  ( A  i^i  |^|_ x  e.  X  { y  e.  A  |  ph } )  =  { y  e.  A  |  A. x  e.  X  ph }
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    =/= wne 2794   A.wral 2912   {crab 2916    i^i cin 3573    C_ wss 3574   (/)c0 3915   |^|_ciin 4521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-iin 4523
This theorem is referenced by:  acsfn1  16322  acsfn1c  16323  acsfn2  16324  cntziinsn  17767  csscld  23048  acsfn1p  37769
  Copyright terms: Public domain W3C validator