Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  pmapglbx Structured version   Visualization version   Unicode version

Theorem pmapglbx 35055
Description: The projective map of the GLB of a set of lattice elements. Index-set version of pmapglb 35056, where we read  S as  S ( i ). Theorem 15.5.2 of [MaedaMaeda] p. 62. (Contributed by NM, 5-Dec-2011.)
Hypotheses
Ref Expression
pmapglb.b  |-  B  =  ( Base `  K
)
pmapglb.g  |-  G  =  ( glb `  K
)
pmapglb.m  |-  M  =  ( pmap `  K
)
Assertion
Ref Expression
pmapglbx  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  |^|_ i  e.  I 
( M `  S
) )
Distinct variable groups:    y, i, B    i, I, y    i, K, y    y, S
Allowed substitution hints:    S( i)    G( y, i)    M( y, i)

Proof of Theorem pmapglbx
Dummy variables  p  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hlclat 34645 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CLat )
21ad2antrr 762 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  K  e.  CLat )
3 pmapglb.b . . . . . . . . 9  |-  B  =  ( Base `  K
)
4 eqid 2622 . . . . . . . . 9  |-  ( Atoms `  K )  =  (
Atoms `  K )
53, 4atbase 34576 . . . . . . . 8  |-  ( p  e.  ( Atoms `  K
)  ->  p  e.  B )
65adantl 482 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  p  e.  B
)
7 r19.29 3072 . . . . . . . . . . 11  |-  ( ( A. i  e.  I  S  e.  B  /\  E. i  e.  I  y  =  S )  ->  E. i  e.  I 
( S  e.  B  /\  y  =  S
) )
8 eleq1a 2696 . . . . . . . . . . . . 13  |-  ( S  e.  B  ->  (
y  =  S  -> 
y  e.  B ) )
98imp 445 . . . . . . . . . . . 12  |-  ( ( S  e.  B  /\  y  =  S )  ->  y  e.  B )
109rexlimivw 3029 . . . . . . . . . . 11  |-  ( E. i  e.  I  ( S  e.  B  /\  y  =  S )  ->  y  e.  B )
117, 10syl 17 . . . . . . . . . 10  |-  ( ( A. i  e.  I  S  e.  B  /\  E. i  e.  I  y  =  S )  -> 
y  e.  B )
1211ex 450 . . . . . . . . 9  |-  ( A. i  e.  I  S  e.  B  ->  ( E. i  e.  I  y  =  S  ->  y  e.  B ) )
1312ad2antlr 763 . . . . . . . 8  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  ( E. i  e.  I  y  =  S  ->  y  e.  B
) )
1413abssdv 3676 . . . . . . 7  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  { y  |  E. i  e.  I 
y  =  S }  C_  B )
15 eqid 2622 . . . . . . . 8  |-  ( le
`  K )  =  ( le `  K
)
16 pmapglb.g . . . . . . . 8  |-  G  =  ( glb `  K
)
173, 15, 16clatleglb 17126 . . . . . . 7  |-  ( ( K  e.  CLat  /\  p  e.  B  /\  { y  |  E. i  e.  I  y  =  S }  C_  B )  ->  ( p ( le
`  K ) ( G `  { y  |  E. i  e.  I  y  =  S } )  <->  A. z  e.  { y  |  E. i  e.  I  y  =  S } p ( le `  K ) z ) )
182, 6, 14, 17syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  ( p ( le `  K ) ( G `  {
y  |  E. i  e.  I  y  =  S } )  <->  A. z  e.  { y  |  E. i  e.  I  y  =  S } p ( le `  K ) z ) )
19 vex 3203 . . . . . . . . . . . . 13  |-  z  e. 
_V
20 eqeq1 2626 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
y  =  S  <->  z  =  S ) )
2120rexbidv 3052 . . . . . . . . . . . . 13  |-  ( y  =  z  ->  ( E. i  e.  I 
y  =  S  <->  E. i  e.  I  z  =  S ) )
2219, 21elab 3350 . . . . . . . . . . . 12  |-  ( z  e.  { y  |  E. i  e.  I 
y  =  S }  <->  E. i  e.  I  z  =  S )
2322imbi1i 339 . . . . . . . . . . 11  |-  ( ( z  e.  { y  |  E. i  e.  I  y  =  S }  ->  p ( le `  K ) z )  <->  ( E. i  e.  I  z  =  S  ->  p ( le
`  K ) z ) )
24 r19.23v 3023 . . . . . . . . . . 11  |-  ( A. i  e.  I  (
z  =  S  ->  p ( le `  K ) z )  <-> 
( E. i  e.  I  z  =  S  ->  p ( le
`  K ) z ) )
2523, 24bitr4i 267 . . . . . . . . . 10  |-  ( ( z  e.  { y  |  E. i  e.  I  y  =  S }  ->  p ( le `  K ) z )  <->  A. i  e.  I 
( z  =  S  ->  p ( le
`  K ) z ) )
2625albii 1747 . . . . . . . . 9  |-  ( A. z ( z  e. 
{ y  |  E. i  e.  I  y  =  S }  ->  p
( le `  K
) z )  <->  A. z A. i  e.  I 
( z  =  S  ->  p ( le
`  K ) z ) )
27 df-ral 2917 . . . . . . . . 9  |-  ( A. z  e.  { y  |  E. i  e.  I 
y  =  S }
p ( le `  K ) z  <->  A. z
( z  e.  {
y  |  E. i  e.  I  y  =  S }  ->  p ( le `  K ) z ) )
28 ralcom4 3224 . . . . . . . . 9  |-  ( A. i  e.  I  A. z ( z  =  S  ->  p ( le `  K ) z )  <->  A. z A. i  e.  I  ( z  =  S  ->  p ( le `  K ) z ) )
2926, 27, 283bitr4i 292 . . . . . . . 8  |-  ( A. z  e.  { y  |  E. i  e.  I 
y  =  S }
p ( le `  K ) z  <->  A. i  e.  I  A. z
( z  =  S  ->  p ( le
`  K ) z ) )
30 nfv 1843 . . . . . . . . . . 11  |-  F/ z  p ( le `  K ) S
31 breq2 4657 . . . . . . . . . . 11  |-  ( z  =  S  ->  (
p ( le `  K ) z  <->  p ( le `  K ) S ) )
3230, 31ceqsalg 3230 . . . . . . . . . 10  |-  ( S  e.  B  ->  ( A. z ( z  =  S  ->  p ( le `  K ) z )  <->  p ( le
`  K ) S ) )
3332ralimi 2952 . . . . . . . . 9  |-  ( A. i  e.  I  S  e.  B  ->  A. i  e.  I  ( A. z ( z  =  S  ->  p ( le `  K ) z )  <->  p ( le
`  K ) S ) )
34 ralbi 3068 . . . . . . . . 9  |-  ( A. i  e.  I  ( A. z ( z  =  S  ->  p ( le `  K ) z )  <->  p ( le
`  K ) S )  ->  ( A. i  e.  I  A. z ( z  =  S  ->  p ( le `  K ) z )  <->  A. i  e.  I  p ( le `  K ) S ) )
3533, 34syl 17 . . . . . . . 8  |-  ( A. i  e.  I  S  e.  B  ->  ( A. i  e.  I  A. z ( z  =  S  ->  p ( le `  K ) z )  <->  A. i  e.  I  p ( le `  K ) S ) )
3629, 35syl5bb 272 . . . . . . 7  |-  ( A. i  e.  I  S  e.  B  ->  ( A. z  e.  { y  |  E. i  e.  I 
y  =  S }
p ( le `  K ) z  <->  A. i  e.  I  p ( le `  K ) S ) )
3736ad2antlr 763 . . . . . 6  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  ( A. z  e.  { y  |  E. i  e.  I  y  =  S } p ( le `  K ) z  <->  A. i  e.  I  p ( le `  K ) S ) )
3818, 37bitrd 268 . . . . 5  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B )  /\  p  e.  ( Atoms `  K ) )  ->  ( p ( le `  K ) ( G `  {
y  |  E. i  e.  I  y  =  S } )  <->  A. i  e.  I  p ( le `  K ) S ) )
3938rabbidva 3188 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  ->  { p  e.  ( Atoms `  K )  |  p ( le `  K ) ( G `
 { y  |  E. i  e.  I 
y  =  S }
) }  =  {
p  e.  ( Atoms `  K )  |  A. i  e.  I  p
( le `  K
) S } )
40393adant3 1081 . . 3  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  { p  e.  ( Atoms `  K )  |  p ( le `  K ) ( G `
 { y  |  E. i  e.  I 
y  =  S }
) }  =  {
p  e.  ( Atoms `  K )  |  A. i  e.  I  p
( le `  K
) S } )
41 simp1 1061 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  K  e.  HL )
4212abssdv 3676 . . . . . 6  |-  ( A. i  e.  I  S  e.  B  ->  { y  |  E. i  e.  I  y  =  S }  C_  B )
433, 16clatglbcl 17114 . . . . . 6  |-  ( ( K  e.  CLat  /\  {
y  |  E. i  e.  I  y  =  S }  C_  B )  ->  ( G `  { y  |  E. i  e.  I  y  =  S } )  e.  B )
441, 42, 43syl2an 494 . . . . 5  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B )  -> 
( G `  {
y  |  E. i  e.  I  y  =  S } )  e.  B
)
45443adant3 1081 . . . 4  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( G `  { y  |  E. i  e.  I 
y  =  S }
)  e.  B )
46 pmapglb.m . . . . 5  |-  M  =  ( pmap `  K
)
473, 15, 4, 46pmapval 35043 . . . 4  |-  ( ( K  e.  HL  /\  ( G `  { y  |  E. i  e.  I  y  =  S } )  e.  B
)  ->  ( M `  ( G `  {
y  |  E. i  e.  I  y  =  S } ) )  =  { p  e.  (
Atoms `  K )  |  p ( le `  K ) ( G `
 { y  |  E. i  e.  I 
y  =  S }
) } )
4841, 45, 47syl2anc 693 . . 3  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  { p  e.  ( Atoms `  K )  |  p ( le `  K ) ( G `
 { y  |  E. i  e.  I 
y  =  S }
) } )
49 iinrab 4582 . . . 4  |-  ( I  =/=  (/)  ->  |^|_ i  e.  I  { p  e.  ( Atoms `  K )  |  p ( le `  K ) S }  =  { p  e.  (
Atoms `  K )  | 
A. i  e.  I  p ( le `  K ) S }
)
50493ad2ant3 1084 . . 3  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  |^|_ i  e.  I  { p  e.  ( Atoms `  K )  |  p ( le `  K ) S }  =  { p  e.  (
Atoms `  K )  | 
A. i  e.  I  p ( le `  K ) S }
)
5140, 48, 503eqtr4d 2666 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  |^|_ i  e.  I  { p  e.  ( Atoms `  K )  |  p ( le `  K ) S }
)
52 nfv 1843 . . . 4  |-  F/ i  K  e.  HL
53 nfra1 2941 . . . 4  |-  F/ i A. i  e.  I  S  e.  B
54 nfv 1843 . . . 4  |-  F/ i  I  =/=  (/)
5552, 53, 54nf3an 1831 . . 3  |-  F/ i ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B  /\  I  =/=  (/) )
56 simpl1 1064 . . . 4  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  /\  i  e.  I )  ->  K  e.  HL )
57 rspa 2930 . . . . 5  |-  ( ( A. i  e.  I  S  e.  B  /\  i  e.  I )  ->  S  e.  B )
58573ad2antl2 1224 . . . 4  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  /\  i  e.  I )  ->  S  e.  B )
593, 15, 4, 46pmapval 35043 . . . 4  |-  ( ( K  e.  HL  /\  S  e.  B )  ->  ( M `  S
)  =  { p  e.  ( Atoms `  K )  |  p ( le `  K ) S }
)
6056, 58, 59syl2anc 693 . . 3  |-  ( ( ( K  e.  HL  /\ 
A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  /\  i  e.  I )  ->  ( M `  S )  =  { p  e.  (
Atoms `  K )  |  p ( le `  K ) S }
)
6155, 60iineq2d 4541 . 2  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  |^|_ i  e.  I  ( M `  S )  =  |^|_ i  e.  I  {
p  e.  ( Atoms `  K )  |  p ( le `  K
) S } )
6251, 61eqtr4d 2659 1  |-  ( ( K  e.  HL  /\  A. i  e.  I  S  e.  B  /\  I  =/=  (/) )  ->  ( M `  ( G `  { y  |  E. i  e.  I  y  =  S } ) )  =  |^|_ i  e.  I 
( M `  S
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574   (/)c0 3915   |^|_ciin 4521   class class class wbr 4653   ` cfv 5888   Basecbs 15857   lecple 15948   glbcglb 16943   CLatccla 17107   Atomscatm 34550   HLchlt 34637   pmapcpmap 34783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-poset 16946  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-lat 17046  df-clat 17108  df-ats 34554  df-hlat 34638  df-pmap 34790
This theorem is referenced by:  pmapglb  35056  pmapglb2xN  35058
  Copyright terms: Public domain W3C validator