Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  indexa Structured version   Visualization version   Unicode version

Theorem indexa 33528
Description: If for every element of an indexing set  A there exists a corresponding element of another set  B, then there exists a subset of  B consisting only of those elements which are indexed by  A. Used to avoid the Axiom of Choice in situations where only the range of the choice function is needed. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
indexa  |-  ( ( B  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( c 
C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) )
Distinct variable groups:    x, A, y, c    x, B, y, c    ph, c
Allowed substitution hints:    ph( x, y)    M( x, y, c)

Proof of Theorem indexa
Dummy variables  z  w  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rabexg 4812 . 2  |-  ( B  e.  M  ->  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  e.  _V )
2 ssrab2 3687 . . . 4  |-  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B
32a1i 11 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B )
4 nfv 1843 . . . . 5  |-  F/ y  x  e.  A
5 nfre1 3005 . . . . 5  |-  F/ y E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph
6 sbceq2a 3447 . . . . . . . . . . . . . . 15  |-  ( w  =  x  ->  ( [. w  /  x ]. ph  <->  ph ) )
76rspcev 3309 . . . . . . . . . . . . . 14  |-  ( ( x  e.  A  /\  ph )  ->  E. w  e.  A  [. w  /  x ]. ph )
87ancoms 469 . . . . . . . . . . . . 13  |-  ( (
ph  /\  x  e.  A )  ->  E. w  e.  A  [. w  /  x ]. ph )
98anim2i 593 . . . . . . . . . . . 12  |-  ( ( y  e.  B  /\  ( ph  /\  x  e.  A ) )  -> 
( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
109ancoms 469 . . . . . . . . . . 11  |-  ( ( ( ph  /\  x  e.  A )  /\  y  e.  B )  ->  (
y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph )
)
1110anasss 679 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  A  /\  y  e.  B ) )  -> 
( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
1211ancoms 469 . . . . . . . . 9  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  -> 
( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
13 sbceq2a 3447 . . . . . . . . . . . 12  |-  ( z  =  y  ->  ( [. z  /  y ]. ph  <->  ph ) )
1413sbcbidv 3490 . . . . . . . . . . 11  |-  ( z  =  y  ->  ( [. w  /  x ]. [. z  /  y ]. ph  <->  [. w  /  x ]. ph ) )
1514rexbidv 3052 . . . . . . . . . 10  |-  ( z  =  y  ->  ( E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph  <->  E. w  e.  A  [. w  /  x ]. ph )
)
1615elrab 3363 . . . . . . . . 9  |-  ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  <->  ( y  e.  B  /\  E. w  e.  A  [. w  /  x ]. ph ) )
1712, 16sylibr 224 . . . . . . . 8  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  -> 
y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
)
18 sbceq2a 3447 . . . . . . . . 9  |-  ( v  =  y  ->  ( [. v  /  y ]. ph  <->  ph ) )
1918rspcev 3309 . . . . . . . 8  |-  ( ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  /\  ph )  ->  E. v  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } [. v  / 
y ]. ph )
2017, 19sylancom 701 . . . . . . 7  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  ->  E. v  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } [. v  /  y ]. ph )
21 nfcv 2764 . . . . . . . 8  |-  F/_ v { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
22 nfcv 2764 . . . . . . . . . 10  |-  F/_ y A
23 nfcv 2764 . . . . . . . . . . 11  |-  F/_ y
w
24 nfsbc1v 3455 . . . . . . . . . . 11  |-  F/ y
[. z  /  y ]. ph
2523, 24nfsbc 3457 . . . . . . . . . 10  |-  F/ y
[. w  /  x ]. [. z  /  y ]. ph
2622, 25nfrex 3007 . . . . . . . . 9  |-  F/ y E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph
27 nfcv 2764 . . . . . . . . 9  |-  F/_ y B
2826, 27nfrab 3123 . . . . . . . 8  |-  F/_ y { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
29 nfsbc1v 3455 . . . . . . . 8  |-  F/ y
[. v  /  y ]. ph
30 nfv 1843 . . . . . . . 8  |-  F/ v
ph
3121, 28, 29, 30, 18cbvrexf 3166 . . . . . . 7  |-  ( E. v  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } [. v  /  y ]. ph  <->  E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph )
3220, 31sylib 208 . . . . . 6  |-  ( ( ( x  e.  A  /\  y  e.  B
)  /\  ph )  ->  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph )
3332exp31 630 . . . . 5  |-  ( x  e.  A  ->  (
y  e.  B  -> 
( ph  ->  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) ) )
344, 5, 33rexlimd 3026 . . . 4  |-  ( x  e.  A  ->  ( E. y  e.  B  ph 
->  E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) )
3534ralimia 2950 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph )
36 nfsbc1v 3455 . . . . . . . . 9  |-  F/ x [. w  /  x ]. ph
37 nfv 1843 . . . . . . . . 9  |-  F/ w ph
3836, 37, 6cbvrex 3168 . . . . . . . 8  |-  ( E. w  e.  A  [. w  /  x ]. ph  <->  E. x  e.  A  ph )
3915, 38syl6bb 276 . . . . . . 7  |-  ( z  =  y  ->  ( E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph  <->  E. x  e.  A  ph ) )
4039elrab 3363 . . . . . 6  |-  ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  <->  ( y  e.  B  /\  E. x  e.  A  ph ) )
4140simprbi 480 . . . . 5  |-  ( y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  E. x  e.  A  ph )
4241rgen 2922 . . . 4  |-  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph
4342a1i 11 . . 3  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph )
443, 35, 433jca 1242 . 2  |-  ( A. x  e.  A  E. y  e.  B  ph  ->  ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) )
45 sseq1 3626 . . . . 5  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( c  C_  B  <->  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B ) )
46 nfcv 2764 . . . . . . . . 9  |-  F/_ x A
47 nfsbc1v 3455 . . . . . . . . 9  |-  F/ x [. w  /  x ]. [. z  /  y ]. ph
4846, 47nfrex 3007 . . . . . . . 8  |-  F/ x E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph
49 nfcv 2764 . . . . . . . 8  |-  F/_ x B
5048, 49nfrab 3123 . . . . . . 7  |-  F/_ x { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
5150nfeq2 2780 . . . . . 6  |-  F/ x  c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }
52 nfcv 2764 . . . . . . 7  |-  F/_ y
c
5352, 28rexeqf 3135 . . . . . 6  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( E. y  e.  c 
ph 
<->  E. y  e.  {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) )
5451, 53ralbid 2983 . . . . 5  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( A. x  e.  A  E. y  e.  c  ph 
<-> 
A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph ) )
5552, 28raleqf 3134 . . . . 5  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( A. y  e.  c  E. x  e.  A  ph  <->  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) )
5645, 54, 553anbi123d 1399 . . . 4  |-  ( c  =  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  ->  ( ( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph )  <->  ( {
z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) ) )
5756spcegv 3294 . . 3  |-  ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  e.  _V  ->  ( ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  / 
y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph )  ->  E. c
( c  C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\  A. y  e.  c  E. x  e.  A  ph ) ) )
5857imp 445 . 2  |-  ( ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  e.  _V  /\  ( { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph }  C_  B  /\  A. x  e.  A  E. y  e.  { z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } ph  /\  A. y  e. 
{ z  e.  B  |  E. w  e.  A  [. w  /  x ]. [. z  /  y ]. ph } E. x  e.  A  ph ) )  ->  E. c ( c 
C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) )
591, 44, 58syl2an 494 1  |-  ( ( B  e.  M  /\  A. x  e.  A  E. y  e.  B  ph )  ->  E. c ( c 
C_  B  /\  A. x  e.  A  E. y  e.  c  ph  /\ 
A. y  e.  c  E. x  e.  A  ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200   [.wsbc 3435    C_ wss 3574
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-in 3581  df-ss 3588
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator