| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > indexdom | Structured version Visualization version Unicode version | ||
| Description: If for every element of
an indexing set |
| Ref | Expression |
|---|---|
| indexdom |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfsbc1v 3455 |
. . 3
| |
| 2 | sbceq1a 3446 |
. . 3
| |
| 3 | 1, 2 | ac6gf 33527 |
. 2
|
| 4 | fdm 6051 |
. . . . . . 7
| |
| 5 | vex 3203 |
. . . . . . . 8
| |
| 6 | 5 | dmex 7099 |
. . . . . . 7
|
| 7 | 4, 6 | syl6eqelr 2710 |
. . . . . 6
|
| 8 | ffn 6045 |
. . . . . 6
| |
| 9 | fnrndomg 9358 |
. . . . . 6
| |
| 10 | 7, 8, 9 | sylc 65 |
. . . . 5
|
| 11 | 10 | adantr 481 |
. . . 4
|
| 12 | frn 6053 |
. . . . 5
| |
| 13 | 12 | adantr 481 |
. . . 4
|
| 14 | nfv 1843 |
. . . . . 6
| |
| 15 | nfra1 2941 |
. . . . . 6
| |
| 16 | 14, 15 | nfan 1828 |
. . . . 5
|
| 17 | ffun 6048 |
. . . . . . . . . 10
| |
| 18 | 17 | adantr 481 |
. . . . . . . . 9
|
| 19 | 4 | eleq2d 2687 |
. . . . . . . . . 10
|
| 20 | 19 | biimpar 502 |
. . . . . . . . 9
|
| 21 | fvelrn 6352 |
. . . . . . . . 9
| |
| 22 | 18, 20, 21 | syl2anc 693 |
. . . . . . . 8
|
| 23 | 22 | adantlr 751 |
. . . . . . 7
|
| 24 | rspa 2930 |
. . . . . . . 8
| |
| 25 | 24 | adantll 750 |
. . . . . . 7
|
| 26 | rspesbca 3520 |
. . . . . . 7
| |
| 27 | 23, 25, 26 | syl2anc 693 |
. . . . . 6
|
| 28 | 27 | ex 450 |
. . . . 5
|
| 29 | 16, 28 | ralrimi 2957 |
. . . 4
|
| 30 | nfv 1843 |
. . . . . 6
| |
| 31 | nfcv 2764 |
. . . . . . 7
| |
| 32 | 31, 1 | nfral 2945 |
. . . . . 6
|
| 33 | 30, 32 | nfan 1828 |
. . . . 5
|
| 34 | fvelrnb 6243 |
. . . . . . . 8
| |
| 35 | 8, 34 | syl 17 |
. . . . . . 7
|
| 36 | 35 | adantr 481 |
. . . . . 6
|
| 37 | rsp 2929 |
. . . . . . . . 9
| |
| 38 | 37 | adantl 482 |
. . . . . . . 8
|
| 39 | 2 | eqcoms 2630 |
. . . . . . . . 9
|
| 40 | 39 | biimprcd 240 |
. . . . . . . 8
|
| 41 | 38, 40 | syl6 35 |
. . . . . . 7
|
| 42 | 16, 41 | reximdai 3012 |
. . . . . 6
|
| 43 | 36, 42 | sylbid 230 |
. . . . 5
|
| 44 | 33, 43 | ralrimi 2957 |
. . . 4
|
| 45 | 5 | rnex 7100 |
. . . . 5
|
| 46 | breq1 4656 |
. . . . . . 7
| |
| 47 | sseq1 3626 |
. . . . . . 7
| |
| 48 | 46, 47 | anbi12d 747 |
. . . . . 6
|
| 49 | rexeq 3139 |
. . . . . . . 8
| |
| 50 | 49 | ralbidv 2986 |
. . . . . . 7
|
| 51 | raleq 3138 |
. . . . . . 7
| |
| 52 | 50, 51 | anbi12d 747 |
. . . . . 6
|
| 53 | 48, 52 | anbi12d 747 |
. . . . 5
|
| 54 | 45, 53 | spcev 3300 |
. . . 4
|
| 55 | 11, 13, 29, 44, 54 | syl22anc 1327 |
. . 3
|
| 56 | 55 | exlimiv 1858 |
. 2
|
| 57 | 3, 56 | syl 17 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-rep 4771 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 ax-reg 8497 ax-inf2 8538 ax-ac2 9285 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-reu 2919 df-rmo 2920 df-rab 2921 df-v 3202 df-sbc 3436 df-csb 3534 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-tp 4182 df-op 4184 df-uni 4437 df-int 4476 df-iun 4522 df-iin 4523 df-br 4654 df-opab 4713 df-mpt 4730 df-tr 4753 df-id 5024 df-eprel 5029 df-po 5035 df-so 5036 df-fr 5073 df-se 5074 df-we 5075 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-pred 5680 df-ord 5726 df-on 5727 df-lim 5728 df-suc 5729 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-riota 6611 df-ov 6653 df-oprab 6654 df-mpt2 6655 df-om 7066 df-1st 7168 df-2nd 7169 df-wrecs 7407 df-recs 7468 df-rdg 7506 df-er 7742 df-map 7859 df-en 7956 df-dom 7957 df-r1 8627 df-rank 8628 df-card 8765 df-acn 8768 df-ac 8939 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |