MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  indif1 Structured version   Visualization version   Unicode version

Theorem indif1 3871
Description: Bring an intersection in and out of a class difference. (Contributed by Mario Carneiro, 15-May-2015.)
Assertion
Ref Expression
indif1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )

Proof of Theorem indif1
StepHypRef Expression
1 indif2 3870 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( B  i^i  A )  \  C )
2 incom 3805 . 2  |-  ( B  i^i  ( A  \  C ) )  =  ( ( A  \  C )  i^i  B
)
3 incom 3805 . . 3  |-  ( B  i^i  A )  =  ( A  i^i  B
)
43difeq1i 3724 . 2  |-  ( ( B  i^i  A ) 
\  C )  =  ( ( A  i^i  B )  \  C )
51, 2, 43eqtr3i 2652 1  |-  ( ( A  \  C )  i^i  B )  =  ( ( A  i^i  B )  \  C )
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483    \ cdif 3571    i^i cin 3573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581
This theorem is referenced by:  resdifcom  5415  resdmdfsn  5445  hartogslem1  8447  fpwwe2  9465  leiso  13243  basdif0  20757  tgdif0  20796  kqdisj  21535  trufil  21714  difininv  29354  gtiso  29478  dfon4  32000
  Copyright terms: Public domain W3C validator