MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hartogslem1 Structured version   Visualization version   Unicode version

Theorem hartogslem1 8447
Description: Lemma for hartogs 8449. (Contributed by Mario Carneiro, 14-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.)
Hypotheses
Ref Expression
hartogslem.2  |-  F  =  { <. r ,  y
>.  |  ( (
( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
hartogslem.3  |-  R  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( f `
 w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }
Assertion
Ref Expression
hartogslem1  |-  ( dom 
F  C_  ~P ( A  X.  A )  /\  Fun  F  /\  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } ) )
Distinct variable groups:    f, s,
t, w, y, z   
f, r, x, A, y    R, r, x    V, r, y
Allowed substitution hints:    A( z, w, t, s)    R( y, z, w, t, f, s)    F( x, y, z, w, t, f, s, r)    V( x, z, w, t, f, s)

Proof of Theorem hartogslem1
StepHypRef Expression
1 hartogslem.2 . . . . 5  |-  F  =  { <. r ,  y
>.  |  ( (
( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
21dmeqi 5325 . . . 4  |-  dom  F  =  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
3 dmopab 5335 . . . 4  |-  dom  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  =  { r  |  E. y ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
42, 3eqtri 2644 . . 3  |-  dom  F  =  { r  |  E. y ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
5 simp3 1063 . . . . . . . 8  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  r  C_  ( dom  r  X.  dom  r
) )
6 simp1 1061 . . . . . . . . 9  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  dom  r  C_  A )
7 xpss12 5225 . . . . . . . . 9  |-  ( ( dom  r  C_  A  /\  dom  r  C_  A
)  ->  ( dom  r  X.  dom  r ) 
C_  ( A  X.  A ) )
86, 6, 7syl2anc 693 . . . . . . . 8  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  ( dom  r  X.  dom  r )  C_  ( A  X.  A
) )
95, 8sstrd 3613 . . . . . . 7  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  r  C_  ( A  X.  A ) )
10 selpw 4165 . . . . . . 7  |-  ( r  e.  ~P ( A  X.  A )  <->  r  C_  ( A  X.  A
) )
119, 10sylibr 224 . . . . . 6  |-  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  ->  r  e.  ~P ( A  X.  A
) )
1211ad2antrr 762 . . . . 5  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  r  e.  ~P ( A  X.  A
) )
1312exlimiv 1858 . . . 4  |-  ( E. y ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) )  ->  r  e.  ~P ( A  X.  A
) )
1413abssi 3677 . . 3  |-  { r  |  E. y ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }  C_  ~P ( A  X.  A )
154, 14eqsstri 3635 . 2  |-  dom  F  C_ 
~P ( A  X.  A )
16 funopab4 5925 . . 3  |-  Fun  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
171funeqi 5909 . . 3  |-  ( Fun 
F  <->  Fun  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) } )
1816, 17mpbir 221 . 2  |-  Fun  F
19 breq1 4656 . . . . . 6  |-  ( x  =  y  ->  (
x  ~<_  A  <->  y  ~<_  A ) )
2019elrab 3363 . . . . 5  |-  ( y  e.  { x  e.  On  |  x  ~<_  A }  <->  ( y  e.  On  /\  y  ~<_  A ) )
21 brdomi 7966 . . . . . . 7  |-  ( y  ~<_  A  ->  E. f 
f : y -1-1-> A
)
22 f1f 6101 . . . . . . . . . . . . . 14  |-  ( f : y -1-1-> A  -> 
f : y --> A )
2322adantl 482 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f : y --> A )
24 frn 6053 . . . . . . . . . . . . 13  |-  ( f : y --> A  ->  ran  f  C_  A )
2523, 24syl 17 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ran  f  C_  A )
26 resss 5422 . . . . . . . . . . . . . . 15  |-  (  _I  |`  ran  f )  C_  _I
27 ssun2 3777 . . . . . . . . . . . . . . 15  |-  _I  C_  ( R  u.  _I  )
2826, 27sstri 3612 . . . . . . . . . . . . . 14  |-  (  _I  |`  ran  f )  C_  ( R  u.  _I  )
29 f1oi 6174 . . . . . . . . . . . . . . 15  |-  (  _I  |`  ran  f ) : ran  f -1-1-onto-> ran  f
30 f1of 6137 . . . . . . . . . . . . . . 15  |-  ( (  _I  |`  ran  f ) : ran  f -1-1-onto-> ran  f  ->  (  _I  |`  ran  f
) : ran  f --> ran  f )
31 fssxp 6060 . . . . . . . . . . . . . . 15  |-  ( (  _I  |`  ran  f ) : ran  f --> ran  f  ->  (  _I  |` 
ran  f )  C_  ( ran  f  X.  ran  f ) )
3229, 30, 31mp2b 10 . . . . . . . . . . . . . 14  |-  (  _I  |`  ran  f )  C_  ( ran  f  X.  ran  f )
3328, 32ssini 3836 . . . . . . . . . . . . 13  |-  (  _I  |`  ran  f )  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f
) )
3433a1i 11 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) )
35 inss2 3834 . . . . . . . . . . . . 13  |-  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f )
3635a1i 11 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) )
3725, 34, 363jca 1242 . . . . . . . . . . 11  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ran  f  C_  A  /\  (  _I  |`  ran  f )  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f
) )  /\  (
( R  u.  _I  )  i^i  ( ran  f  X.  ran  f ) ) 
C_  ( ran  f  X.  ran  f ) ) )
38 eloni 5733 . . . . . . . . . . . . . . 15  |-  ( y  e.  On  ->  Ord  y )
39 ordwe 5736 . . . . . . . . . . . . . . 15  |-  ( Ord  y  ->  _E  We  y )
4038, 39syl 17 . . . . . . . . . . . . . 14  |-  ( y  e.  On  ->  _E  We  y )
4140adantr 481 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  _E  We  y
)
42 f1f1orn 6148 . . . . . . . . . . . . . . . . 17  |-  ( f : y -1-1-> A  -> 
f : y -1-1-onto-> ran  f
)
4342adantl 482 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f : y -1-1-onto-> ran  f )
44 hartogslem.3 . . . . . . . . . . . . . . . 16  |-  R  =  { <. s ,  t
>.  |  E. w  e.  y  E. z  e.  y  ( (
s  =  ( f `
 w )  /\  t  =  ( f `  z ) )  /\  w  _E  z ) }
45 f1oiso 6601 . . . . . . . . . . . . . . . 16  |-  ( ( f : y -1-1-onto-> ran  f  /\  R  =  { <. s ,  t >.  |  E. w  e.  y  E. z  e.  y  ( ( s  =  ( f `  w
)  /\  t  =  ( f `  z
) )  /\  w  _E  z ) } )  ->  f  Isom  _E  ,  R  ( y ,  ran  f ) )
4643, 44, 45sylancl 694 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f  Isom  _E  ,  R  ( y ,  ran  f ) )
47 isores2 6583 . . . . . . . . . . . . . . 15  |-  ( f 
Isom  _E  ,  R  ( y ,  ran  f )  <->  f  Isom  _E  ,  ( R  i^i  ( ran  f  X.  ran  f ) ) ( y ,  ran  f
) )
4846, 47sylib 208 . . . . . . . . . . . . . 14  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f  Isom  _E  , 
( R  i^i  ( ran  f  X.  ran  f
) ) ( y ,  ran  f ) )
49 isowe 6599 . . . . . . . . . . . . . 14  |-  ( f 
Isom  _E  ,  ( R  i^i  ( ran  f  X.  ran  f ) ) ( y ,  ran  f )  ->  (  _E  We  y  <->  ( R  i^i  ( ran  f  X. 
ran  f ) )  We  ran  f ) )
5048, 49syl 17 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  (  _E  We  y 
<->  ( R  i^i  ( ran  f  X.  ran  f
) )  We  ran  f ) )
5141, 50mpbid 222 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( R  i^i  ( ran  f  X.  ran  f ) )  We 
ran  f )
52 weso 5105 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  i^i  ( ran  f  X.  ran  f
) )  We  ran  f  ->  ( R  i^i  ( ran  f  X.  ran  f ) )  Or 
ran  f )
5351, 52syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( R  i^i  ( ran  f  X.  ran  f ) )  Or 
ran  f )
54 inss2 3834 . . . . . . . . . . . . . . . . . . . 20  |-  ( R  i^i  ( ran  f  X.  ran  f ) ) 
C_  ( ran  f  X.  ran  f )
5554brel 5168 . . . . . . . . . . . . . . . . . . 19  |-  ( x ( R  i^i  ( ran  f  X.  ran  f
) ) x  -> 
( x  e.  ran  f  /\  x  e.  ran  f ) )
5655simpld 475 . . . . . . . . . . . . . . . . . 18  |-  ( x ( R  i^i  ( ran  f  X.  ran  f
) ) x  ->  x  e.  ran  f )
57 sonr 5056 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  Or  ran  f  /\  x  e.  ran  f )  ->  -.  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )
5853, 56, 57syl2an 494 . . . . . . . . . . . . . . . . 17  |-  ( ( ( y  e.  On  /\  f : y -1-1-> A
)  /\  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )  ->  -.  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )
5958pm2.01da 458 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  -.  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )
6059alrimiv 1855 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  A. x  -.  x
( R  i^i  ( ran  f  X.  ran  f
) ) x )
61 intirr 5514 . . . . . . . . . . . . . . 15  |-  ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  i^i  _I  )  =  (/)  <->  A. x  -.  x ( R  i^i  ( ran  f  X.  ran  f ) ) x )
6260, 61sylibr 224 . . . . . . . . . . . . . 14  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( R  i^i  ( ran  f  X.  ran  f ) )  i^i  _I  )  =  (/) )
63 disj3 4021 . . . . . . . . . . . . . 14  |-  ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  i^i  _I  )  =  (/)  <->  ( R  i^i  ( ran  f  X. 
ran  f ) )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) )
6462, 63sylib 208 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( R  i^i  ( ran  f  X.  ran  f ) )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) )
65 weeq1 5102 . . . . . . . . . . . . 13  |-  ( ( R  i^i  ( ran  f  X.  ran  f
) )  =  ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  )  ->  ( ( R  i^i  ( ran  f  X.  ran  f ) )  We  ran  f  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
6664, 65syl 17 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( R  i^i  ( ran  f  X.  ran  f ) )  We  ran  f  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
6751, 66mpbid 222 . . . . . . . . . . 11  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f )
6838adantr 481 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  Ord  y )
69 isoeq3 6569 . . . . . . . . . . . . . . 15  |-  ( ( R  i^i  ( ran  f  X.  ran  f
) )  =  ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  )  ->  ( f  Isom  _E  ,  ( R  i^i  ( ran  f  X.  ran  f ) ) ( y ,  ran  f
)  <->  f  Isom  _E  , 
(  ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ( y ,  ran  f ) ) )
7064, 69syl 17 . . . . . . . . . . . . . 14  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( f  Isom  _E  ,  ( R  i^i  ( ran  f  X.  ran  f ) ) ( y ,  ran  f
)  <->  f  Isom  _E  , 
(  ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ( y ,  ran  f ) ) )
7148, 70mpbid 222 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  f  Isom  _E  , 
(  ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ( y ,  ran  f ) )
72 vex 3203 . . . . . . . . . . . . . . . 16  |-  f  e. 
_V
7372rnex 7100 . . . . . . . . . . . . . . 15  |-  ran  f  e.  _V
74 exse 5078 . . . . . . . . . . . . . . 15  |-  ( ran  f  e.  _V  ->  ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) Se  ran  f )
7573, 74ax-mp 5 . . . . . . . . . . . . . 14  |-  ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) Se  ran  f
76 eqid 2622 . . . . . . . . . . . . . . 15  |- OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f )  = OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f )
7776oieu 8444 . . . . . . . . . . . . . 14  |-  ( ( ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  )  We  ran  f  /\  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) Se  ran  f )  ->  (
( Ord  y  /\  f  Isom  _E  ,  (  ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ( y ,  ran  f ) )  <-> 
( y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
)  /\  f  = OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
) ) ) )
7867, 75, 77sylancl 694 . . . . . . . . . . . . 13  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( ( Ord  y  /\  f  Isom  _E  ,  (  ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ( y ,  ran  f
) )  <->  ( y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f )  /\  f  = OrdIso (
( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
) ) ) )
7968, 71, 78mpbi2and 956 . . . . . . . . . . . 12  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  ( y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f )  /\  f  = OrdIso (
( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
) ) )
8079simpld 475 . . . . . . . . . . 11  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  ) ,  ran  f
) )
8173, 73xpex 6962 . . . . . . . . . . . . 13  |-  ( ran  f  X.  ran  f
)  e.  _V
8281inex2 4800 . . . . . . . . . . . 12  |-  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  e.  _V
83 sseq1 3626 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( r  C_  ( ran  f  X.  ran  f )  <->  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) ) )
8435, 83mpbiri 248 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  r  C_  ( ran  f  X.  ran  f
) )
85 dmss 5323 . . . . . . . . . . . . . . . . . . 19  |-  ( r 
C_  ( ran  f  X.  ran  f )  ->  dom  r  C_  dom  ( ran  f  X.  ran  f
) )
8684, 85syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom  r  C_  dom  ( ran  f  X. 
ran  f ) )
87 dmxpid 5345 . . . . . . . . . . . . . . . . . 18  |-  dom  ( ran  f  X.  ran  f
)  =  ran  f
8886, 87syl6sseq 3651 . . . . . . . . . . . . . . . . 17  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom  r  C_  ran  f )
89 dmresi 5457 . . . . . . . . . . . . . . . . . 18  |-  dom  (  _I  |`  ran  f )  =  ran  f
90 sseq2 3627 . . . . . . . . . . . . . . . . . . . 20  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( (  _I  |`  ran  f )  C_  r 
<->  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) ) )
9133, 90mpbiri 248 . . . . . . . . . . . . . . . . . . 19  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  (  _I  |`  ran  f
)  C_  r )
92 dmss 5323 . . . . . . . . . . . . . . . . . . 19  |-  ( (  _I  |`  ran  f ) 
C_  r  ->  dom  (  _I  |`  ran  f
)  C_  dom  r )
9391, 92syl 17 . . . . . . . . . . . . . . . . . 18  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom  (  _I  |` 
ran  f )  C_  dom  r )
9489, 93syl5eqssr 3650 . . . . . . . . . . . . . . . . 17  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ran  f  C_  dom  r )
9588, 94eqssd 3620 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom  r  =  ran  f )
9695sseq1d 3632 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( dom  r  C_  A  <->  ran  f  C_  A
) )
9795reseq2d 5396 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  (  _I  |`  dom  r
)  =  (  _I  |`  ran  f ) )
98 id 22 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f ) ) )
9997, 98sseq12d 3634 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( (  _I  |`  dom  r )  C_  r 
<->  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) ) )
10095sqxpeqd 5141 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( dom  r  X.  dom  r )  =  ( ran  f  X. 
ran  f ) )
10198, 100sseq12d 3634 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( r  C_  ( dom  r  X.  dom  r )  <->  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) ) )
10296, 99, 1013anbi123d 1399 . . . . . . . . . . . . . 14  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  <-> 
( ran  f  C_  A  /\  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  /\  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) ) ) )
103 difeq1 3721 . . . . . . . . . . . . . . . . 17  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( r  \  _I  )  =  (
( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) )
104 difun2 4048 . . . . . . . . . . . . . . . . . . 19  |-  ( ( R  u.  _I  )  \  _I  )  =  ( R  \  _I  )
105104ineq1i 3810 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  u.  _I  )  \  _I  )  i^i  ( ran  f  X. 
ran  f ) )  =  ( ( R 
\  _I  )  i^i  ( ran  f  X. 
ran  f ) )
106 indif1 3871 . . . . . . . . . . . . . . . . . 18  |-  ( ( ( R  u.  _I  )  \  _I  )  i^i  ( ran  f  X. 
ran  f ) )  =  ( ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
\  _I  )
107 indif1 3871 . . . . . . . . . . . . . . . . . 18  |-  ( ( R  \  _I  )  i^i  ( ran  f  X. 
ran  f ) )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )
108105, 106, 1073eqtr3i 2652 . . . . . . . . . . . . . . . . 17  |-  ( ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  )
109103, 108syl6eq 2672 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( r  \  _I  )  =  (
( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) )
110 weeq1 5102 . . . . . . . . . . . . . . . 16  |-  ( ( r  \  _I  )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  -> 
( ( r  \  _I  )  We  dom  r 
<->  ( ( R  i^i  ( ran  f  X.  ran  f ) )  \  _I  )  We  dom  r ) )
111109, 110syl 17 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( r 
\  _I  )  We 
dom  r  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
dom  r ) )
112 weeq2 5103 . . . . . . . . . . . . . . . 16  |-  ( dom  r  =  ran  f  ->  ( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
dom  r  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
11395, 112syl 17 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  )  We  dom  r  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
114111, 113bitrd 268 . . . . . . . . . . . . . 14  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( r 
\  _I  )  We 
dom  r  <->  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) )
115102, 114anbi12d 747 . . . . . . . . . . . . 13  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  <->  ( ( ran  f  C_  A  /\  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  /\  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) )  /\  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f ) ) )
116 oieq1 8417 . . . . . . . . . . . . . . . . 17  |-  ( ( r  \  _I  )  =  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  -> OrdIso ( ( r  \  _I  ) ,  dom  r
)  = OrdIso ( (
( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  dom  r ) )
117109, 116syl 17 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  -> OrdIso ( ( r  \  _I  ) ,  dom  r
)  = OrdIso ( (
( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  dom  r ) )
118 oieq2 8418 . . . . . . . . . . . . . . . . 17  |-  ( dom  r  =  ran  f  -> OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  dom  r )  = OrdIso
( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  ran  f ) )
11995, 118syl 17 . . . . . . . . . . . . . . . 16  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  -> OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  dom  r )  = OrdIso
( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  ran  f ) )
120117, 119eqtrd 2656 . . . . . . . . . . . . . . 15  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  -> OrdIso ( ( r  \  _I  ) ,  dom  r
)  = OrdIso ( (
( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f ) )
121120dmeqd 5326 . . . . . . . . . . . . . 14  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  dom OrdIso ( (
r  \  _I  ) ,  dom  r )  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f ) )
122121eqeq2d 2632 . . . . . . . . . . . . 13  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r )  <->  y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  ) ,  ran  f ) ) )
123115, 122anbi12d 747 . . . . . . . . . . . 12  |-  ( r  =  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  ->  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) )  <-> 
( ( ( ran  f  C_  A  /\  (  _I  |`  ran  f
)  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) )  /\  ( ( R  u.  _I  )  i^i  ( ran  f  X. 
ran  f ) ) 
C_  ( ran  f  X.  ran  f ) )  /\  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f )  /\  y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f ) ) ) )
12482, 123spcev 3300 . . . . . . . . . . 11  |-  ( ( ( ( ran  f  C_  A  /\  (  _I  |`  ran  f )  C_  ( ( R  u.  _I  )  i^i  ( ran  f  X.  ran  f
) )  /\  (
( R  u.  _I  )  i^i  ( ran  f  X.  ran  f ) ) 
C_  ( ran  f  X.  ran  f ) )  /\  ( ( R  i^i  ( ran  f  X.  ran  f ) ) 
\  _I  )  We 
ran  f )  /\  y  =  dom OrdIso ( ( ( R  i^i  ( ran  f  X.  ran  f
) )  \  _I  ) ,  ran  f ) )  ->  E. r
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )
12537, 67, 80, 124syl21anc 1325 . . . . . . . . . 10  |-  ( ( y  e.  On  /\  f : y -1-1-> A )  ->  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )
126125ex 450 . . . . . . . . 9  |-  ( y  e.  On  ->  (
f : y -1-1-> A  ->  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) ) )
127126exlimdv 1861 . . . . . . . 8  |-  ( y  e.  On  ->  ( E. f  f :
y -1-1-> A  ->  E. r
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) ) )
128127imp 445 . . . . . . 7  |-  ( ( y  e.  On  /\  E. f  f : y
-1-1-> A )  ->  E. r
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )
12921, 128sylan2 491 . . . . . 6  |-  ( ( y  e.  On  /\  y  ~<_  A )  ->  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )
130 simpr 477 . . . . . . . . . . 11  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )
131 vex 3203 . . . . . . . . . . . . 13  |-  r  e. 
_V
132131dmex 7099 . . . . . . . . . . . 12  |-  dom  r  e.  _V
133 eqid 2622 . . . . . . . . . . . . 13  |- OrdIso ( ( r  \  _I  ) ,  dom  r )  = OrdIso
( ( r  \  _I  ) ,  dom  r
)
134133oion 8441 . . . . . . . . . . . 12  |-  ( dom  r  e.  _V  ->  dom OrdIso ( ( r  \  _I  ) ,  dom  r
)  e.  On )
135132, 134ax-mp 5 . . . . . . . . . . 11  |-  dom OrdIso ( ( r  \  _I  ) ,  dom  r )  e.  On
136130, 135syl6eqel 2709 . . . . . . . . . 10  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  y  e.  On )
137136adantl 482 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  y  e.  On )
138 simplr 792 . . . . . . . . . . . . 13  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  ( r  \  _I  )  We  dom  r )
139133oien 8443 . . . . . . . . . . . . 13  |-  ( ( dom  r  e.  _V  /\  ( r  \  _I  )  We  dom  r )  ->  dom OrdIso ( (
r  \  _I  ) ,  dom  r )  ~~  dom  r )
140132, 138, 139sylancr 695 . . . . . . . . . . . 12  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  dom OrdIso ( (
r  \  _I  ) ,  dom  r )  ~~  dom  r )
141130, 140eqbrtrd 4675 . . . . . . . . . . 11  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  y  ~~  dom  r )
142141adantl 482 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  y  ~~  dom  r )
143 simpll1 1100 . . . . . . . . . . 11  |-  ( ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) )  ->  dom  r  C_  A )
144 ssdomg 8001 . . . . . . . . . . . 12  |-  ( A  e.  V  ->  ( dom  r  C_  A  ->  dom  r  ~<_  A )
)
145144imp 445 . . . . . . . . . . 11  |-  ( ( A  e.  V  /\  dom  r  C_  A )  ->  dom  r  ~<_  A )
146143, 145sylan2 491 . . . . . . . . . 10  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  dom  r  ~<_  A )
147 endomtr 8014 . . . . . . . . . 10  |-  ( ( y  ~~  dom  r  /\  dom  r  ~<_  A )  ->  y  ~<_  A )
148142, 146, 147syl2anc 693 . . . . . . . . 9  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  y  ~<_  A )
149137, 148jca 554 . . . . . . . 8  |-  ( ( A  e.  V  /\  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) )  ->  ( y  e.  On  /\  y  ~<_  A ) )
150149ex 450 . . . . . . 7  |-  ( A  e.  V  ->  (
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) )  ->  ( y  e.  On  /\  y  ~<_  A ) ) )
151150exlimdv 1861 . . . . . 6  |-  ( A  e.  V  ->  ( E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) )  ->  ( y  e.  On  /\  y  ~<_  A ) ) )
152129, 151impbid2 216 . . . . 5  |-  ( A  e.  V  ->  (
( y  e.  On  /\  y  ~<_  A )  <->  E. r
( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) ) )
15320, 152syl5bb 272 . . . 4  |-  ( A  e.  V  ->  (
y  e.  { x  e.  On  |  x  ~<_  A }  <->  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) ) )
154153abbi2dv 2742 . . 3  |-  ( A  e.  V  ->  { x  e.  On  |  x  ~<_  A }  =  { y  |  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) } )
1551rneqi 5352 . . . 4  |-  ran  F  =  ran  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
156 rnopab 5370 . . . 4  |-  ran  { <. r ,  y >.  |  ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }  =  { y  |  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r )  C_  r  /\  r  C_  ( dom  r  X.  dom  r
) )  /\  (
r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r  \  _I  ) ,  dom  r ) ) }
157155, 156eqtri 2644 . . 3  |-  ran  F  =  { y  |  E. r ( ( ( dom  r  C_  A  /\  (  _I  |`  dom  r
)  C_  r  /\  r  C_  ( dom  r  X.  dom  r ) )  /\  ( r  \  _I  )  We  dom  r )  /\  y  =  dom OrdIso ( ( r 
\  _I  ) ,  dom  r ) ) }
158154, 157syl6reqr 2675 . 2  |-  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } )
15915, 18, 1583pm3.2i 1239 1  |-  ( dom 
F  C_  ~P ( A  X.  A )  /\  Fun  F  /\  ( A  e.  V  ->  ran  F  =  { x  e.  On  |  x  ~<_  A } ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990   {cab 2608   E.wrex 2913   {crab 2916   _Vcvv 3200    \ cdif 3571    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   class class class wbr 4653   {copab 4712    _I cid 5023    _E cep 5028    Or wor 5034   Se wse 5071    We wwe 5072    X. cxp 5112   dom cdm 5114   ran crn 5115    |` cres 5116   Ord word 5722   Oncon0 5723   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -1-1-onto->wf1o 5887   ` cfv 5888    Isom wiso 5889    ~~ cen 7952    ~<_ cdom 7953  OrdIsocoi 8414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-riota 6611  df-wrecs 7407  df-recs 7468  df-en 7956  df-dom 7957  df-oi 8415
This theorem is referenced by:  hartogslem2  8448  harwdom  8495
  Copyright terms: Public domain W3C validator