| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > gtiso | Structured version Visualization version Unicode version | ||
| Description: Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.) |
| Ref | Expression |
|---|---|
| gtiso |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . . 5
| |
| 2 | eqid 2622 |
. . . . 5
| |
| 3 | 1, 2 | isocnv3 6582 |
. . . 4
|
| 4 | 3 | a1i 11 |
. . 3
|
| 5 | df-le 10080 |
. . . . . . . . . 10
| |
| 6 | 5 | cnveqi 5297 |
. . . . . . . . 9
|
| 7 | cnvdif 5539 |
. . . . . . . . 9
| |
| 8 | cnvxp 5551 |
. . . . . . . . . 10
| |
| 9 | ltrel 10100 |
. . . . . . . . . . 11
| |
| 10 | dfrel2 5583 |
. . . . . . . . . . 11
| |
| 11 | 9, 10 | mpbi 220 |
. . . . . . . . . 10
|
| 12 | 8, 11 | difeq12i 3726 |
. . . . . . . . 9
|
| 13 | 6, 7, 12 | 3eqtri 2648 |
. . . . . . . 8
|
| 14 | 13 | ineq1i 3810 |
. . . . . . 7
|
| 15 | indif1 3871 |
. . . . . . 7
| |
| 16 | 14, 15 | eqtri 2644 |
. . . . . 6
|
| 17 | xpss12 5225 |
. . . . . . . . 9
| |
| 18 | 17 | anidms 677 |
. . . . . . . 8
|
| 19 | sseqin2 3817 |
. . . . . . . 8
| |
| 20 | 18, 19 | sylib 208 |
. . . . . . 7
|
| 21 | 20 | difeq1d 3727 |
. . . . . 6
|
| 22 | 16, 21 | syl5req 2669 |
. . . . 5
|
| 23 | 22 | adantr 481 |
. . . 4
|
| 24 | isoeq2 6568 |
. . . 4
| |
| 25 | 23, 24 | syl 17 |
. . 3
|
| 26 | 5 | ineq1i 3810 |
. . . . . . 7
|
| 27 | indif1 3871 |
. . . . . . 7
| |
| 28 | 26, 27 | eqtri 2644 |
. . . . . 6
|
| 29 | xpss12 5225 |
. . . . . . . . 9
| |
| 30 | 29 | anidms 677 |
. . . . . . . 8
|
| 31 | sseqin2 3817 |
. . . . . . . 8
| |
| 32 | 30, 31 | sylib 208 |
. . . . . . 7
|
| 33 | 32 | difeq1d 3727 |
. . . . . 6
|
| 34 | 28, 33 | syl5req 2669 |
. . . . 5
|
| 35 | 34 | adantl 482 |
. . . 4
|
| 36 | isoeq3 6569 |
. . . 4
| |
| 37 | 35, 36 | syl 17 |
. . 3
|
| 38 | 4, 25, 37 | 3bitrd 294 |
. 2
|
| 39 | isocnv2 6581 |
. . 3
| |
| 40 | isores2 6583 |
. . . 4
| |
| 41 | isores1 6584 |
. . . 4
| |
| 42 | 40, 41 | bitri 264 |
. . 3
|
| 43 | lerel 10102 |
. . . . 5
| |
| 44 | dfrel2 5583 |
. . . . 5
| |
| 45 | 43, 44 | mpbi 220 |
. . . 4
|
| 46 | isoeq2 6568 |
. . . 4
| |
| 47 | 45, 46 | ax-mp 5 |
. . 3
|
| 48 | 39, 42, 47 | 3bitr3ri 291 |
. 2
|
| 49 | 38, 48 | syl6bbr 278 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-f1 5893 df-fo 5894 df-f1o 5895 df-fv 5896 df-isom 5897 df-xr 10078 df-ltxr 10079 df-le 10080 |
| This theorem is referenced by: xrge0iifhmeo 29982 |
| Copyright terms: Public domain | W3C validator |