Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  gtiso Structured version   Visualization version   Unicode version

Theorem gtiso 29478
Description: Two ways to write a strictly decreasing function on the reals. (Contributed by Thierry Arnoux, 6-Apr-2017.)
Assertion
Ref Expression
gtiso  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  <  ,  `'  <  ( A ,  B
)  <->  F  Isom  <_  ,  `'  <_  ( A ,  B
) ) )

Proof of Theorem gtiso
StepHypRef Expression
1 eqid 2622 . . . . 5  |-  ( ( A  X.  A ) 
\  <  )  =  ( ( A  X.  A )  \  <  )
2 eqid 2622 . . . . 5  |-  ( ( B  X.  B ) 
\  `'  <  )  =  ( ( B  X.  B )  \  `'  <  )
31, 2isocnv3 6582 . . . 4  |-  ( F 
Isom  <  ,  `'  <  ( A ,  B )  <-> 
F  Isom  ( ( A  X.  A )  \  <  ) ,  ( ( B  X.  B ) 
\  `'  <  )
( A ,  B
) )
43a1i 11 . . 3  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  <  ,  `'  <  ( A ,  B
)  <->  F  Isom  ( ( A  X.  A ) 
\  <  ) , 
( ( B  X.  B )  \  `'  <  ) ( A ,  B ) ) )
5 df-le 10080 . . . . . . . . . 10  |-  <_  =  ( ( RR*  X.  RR* )  \  `'  <  )
65cnveqi 5297 . . . . . . . . 9  |-  `'  <_  =  `' ( ( RR*  X. 
RR* )  \  `'  <  )
7 cnvdif 5539 . . . . . . . . 9  |-  `' ( ( RR*  X.  RR* )  \  `'  <  )  =  ( `' ( RR*  X. 
RR* )  \  `' `'  <  )
8 cnvxp 5551 . . . . . . . . . 10  |-  `' (
RR*  X.  RR* )  =  ( RR*  X.  RR* )
9 ltrel 10100 . . . . . . . . . . 11  |-  Rel  <
10 dfrel2 5583 . . . . . . . . . . 11  |-  ( Rel 
< 
<->  `' `'  <  =  < 
)
119, 10mpbi 220 . . . . . . . . . 10  |-  `' `'  <  =  <
128, 11difeq12i 3726 . . . . . . . . 9  |-  ( `' ( RR*  X.  RR* )  \  `' `'  <  )  =  ( ( RR*  X.  RR* )  \  <  )
136, 7, 123eqtri 2648 . . . . . . . 8  |-  `'  <_  =  ( ( RR*  X.  RR* )  \  <  )
1413ineq1i 3810 . . . . . . 7  |-  ( `' 
<_  i^i  ( A  X.  A ) )  =  ( ( ( RR*  X. 
RR* )  \  <  )  i^i  ( A  X.  A ) )
15 indif1 3871 . . . . . . 7  |-  ( ( ( RR*  X.  RR* )  \  <  )  i^i  ( A  X.  A ) )  =  ( ( (
RR*  X.  RR* )  i^i  ( A  X.  A
) )  \  <  )
1614, 15eqtri 2644 . . . . . 6  |-  ( `' 
<_  i^i  ( A  X.  A ) )  =  ( ( ( RR*  X. 
RR* )  i^i  ( A  X.  A ) ) 
\  <  )
17 xpss12 5225 . . . . . . . . 9  |-  ( ( A  C_  RR*  /\  A  C_ 
RR* )  ->  ( A  X.  A )  C_  ( RR*  X.  RR* )
)
1817anidms 677 . . . . . . . 8  |-  ( A 
C_  RR*  ->  ( A  X.  A )  C_  ( RR*  X.  RR* ) )
19 sseqin2 3817 . . . . . . . 8  |-  ( ( A  X.  A ) 
C_  ( RR*  X.  RR* ) 
<->  ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  =  ( A  X.  A
) )
2018, 19sylib 208 . . . . . . 7  |-  ( A 
C_  RR*  ->  ( ( RR*  X.  RR* )  i^i  ( A  X.  A ) )  =  ( A  X.  A ) )
2120difeq1d 3727 . . . . . 6  |-  ( A 
C_  RR*  ->  ( (
( RR*  X.  RR* )  i^i  ( A  X.  A
) )  \  <  )  =  ( ( A  X.  A )  \  <  ) )
2216, 21syl5req 2669 . . . . 5  |-  ( A 
C_  RR*  ->  ( ( A  X.  A )  \  <  )  =  ( `' 
<_  i^i  ( A  X.  A ) ) )
2322adantr 481 . . . 4  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  (
( A  X.  A
)  \  <  )  =  ( `'  <_  i^i  ( A  X.  A
) ) )
24 isoeq2 6568 . . . 4  |-  ( ( ( A  X.  A
)  \  <  )  =  ( `'  <_  i^i  ( A  X.  A
) )  ->  ( F  Isom  ( ( A  X.  A )  \  <  ) ,  ( ( B  X.  B ) 
\  `'  <  )
( A ,  B
)  <->  F  Isom  ( `' 
<_  i^i  ( A  X.  A ) ) ,  ( ( B  X.  B )  \  `'  <  ) ( A ,  B ) ) )
2523, 24syl 17 . . 3  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  ( ( A  X.  A )  \  <  ) ,  ( ( B  X.  B ) 
\  `'  <  )
( A ,  B
)  <->  F  Isom  ( `' 
<_  i^i  ( A  X.  A ) ) ,  ( ( B  X.  B )  \  `'  <  ) ( A ,  B ) ) )
265ineq1i 3810 . . . . . . 7  |-  (  <_  i^i  ( B  X.  B
) )  =  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( B  X.  B
) )
27 indif1 3871 . . . . . . 7  |-  ( ( ( RR*  X.  RR* )  \  `'  <  )  i^i  ( B  X.  B
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  \  `'  <  )
2826, 27eqtri 2644 . . . . . 6  |-  (  <_  i^i  ( B  X.  B
) )  =  ( ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  \  `'  <  )
29 xpss12 5225 . . . . . . . . 9  |-  ( ( B  C_  RR*  /\  B  C_ 
RR* )  ->  ( B  X.  B )  C_  ( RR*  X.  RR* )
)
3029anidms 677 . . . . . . . 8  |-  ( B 
C_  RR*  ->  ( B  X.  B )  C_  ( RR*  X.  RR* ) )
31 sseqin2 3817 . . . . . . . 8  |-  ( ( B  X.  B ) 
C_  ( RR*  X.  RR* ) 
<->  ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  =  ( B  X.  B
) )
3230, 31sylib 208 . . . . . . 7  |-  ( B 
C_  RR*  ->  ( ( RR*  X.  RR* )  i^i  ( B  X.  B ) )  =  ( B  X.  B ) )
3332difeq1d 3727 . . . . . 6  |-  ( B 
C_  RR*  ->  ( (
( RR*  X.  RR* )  i^i  ( B  X.  B
) )  \  `'  <  )  =  ( ( B  X.  B ) 
\  `'  <  )
)
3428, 33syl5req 2669 . . . . 5  |-  ( B 
C_  RR*  ->  ( ( B  X.  B )  \  `'  <  )  =  (  <_  i^i  ( B  X.  B ) ) )
3534adantl 482 . . . 4  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  (
( B  X.  B
)  \  `'  <  )  =  (  <_  i^i  ( B  X.  B
) ) )
36 isoeq3 6569 . . . 4  |-  ( ( ( B  X.  B
)  \  `'  <  )  =  (  <_  i^i  ( B  X.  B
) )  ->  ( F  Isom  ( `'  <_  i^i  ( A  X.  A
) ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
)  <->  F  Isom  ( `' 
<_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) ) )
3735, 36syl 17 . . 3  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  ( `'  <_  i^i  ( A  X.  A
) ) ,  ( ( B  X.  B
)  \  `'  <  ) ( A ,  B
)  <->  F  Isom  ( `' 
<_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) ) )
384, 25, 373bitrd 294 . 2  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  <  ,  `'  <  ( A ,  B
)  <->  F  Isom  ( `' 
<_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) ) )
39 isocnv2 6581 . . 3  |-  ( F 
Isom  `'  <_  ,  <_  ( A ,  B )  <-> 
F  Isom  `' `'  <_  ,  `'  <_  ( A ,  B )
)
40 isores2 6583 . . . 4  |-  ( F 
Isom  `'  <_  ,  <_  ( A ,  B )  <-> 
F  Isom  `'  <_  ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) )
41 isores1 6584 . . . 4  |-  ( F 
Isom  `'  <_  ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B )  <-> 
F  Isom  ( `'  <_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) )
4240, 41bitri 264 . . 3  |-  ( F 
Isom  `'  <_  ,  <_  ( A ,  B )  <-> 
F  Isom  ( `'  <_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) )
43 lerel 10102 . . . . 5  |-  Rel  <_
44 dfrel2 5583 . . . . 5  |-  ( Rel 
<_ 
<->  `' `'  <_  =  <_ 
)
4543, 44mpbi 220 . . . 4  |-  `' `'  <_  =  <_
46 isoeq2 6568 . . . 4  |-  ( `' `'  <_  =  <_  ->  ( F  Isom  `' `'  <_  ,  `'  <_  ( A ,  B )  <->  F 
Isom  <_  ,  `'  <_  ( A ,  B ) ) )
4745, 46ax-mp 5 . . 3  |-  ( F 
Isom  `' `'  <_  ,  `'  <_  ( A ,  B
)  <->  F  Isom  <_  ,  `'  <_  ( A ,  B
) )
4839, 42, 473bitr3ri 291 . 2  |-  ( F 
Isom  <_  ,  `'  <_  ( A ,  B )  <-> 
F  Isom  ( `'  <_  i^i  ( A  X.  A ) ) ,  (  <_  i^i  ( B  X.  B ) ) ( A ,  B
) )
4938, 48syl6bbr 278 1  |-  ( ( A  C_  RR*  /\  B  C_ 
RR* )  ->  ( F  Isom  <  ,  `'  <  ( A ,  B
)  <->  F  Isom  <_  ,  `'  <_  ( A ,  B
) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    \ cdif 3571    i^i cin 3573    C_ wss 3574    X. cxp 5112   `'ccnv 5113   Rel wrel 5119    Isom wiso 5889   RR*cxr 10073    < clt 10074    <_ cle 10075
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-isom 5897  df-xr 10078  df-ltxr 10079  df-le 10080
This theorem is referenced by:  xrge0iifhmeo  29982
  Copyright terms: Public domain W3C validator