Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  inixp Structured version   Visualization version   Unicode version

Theorem inixp 33523
Description: Intersection of Cartesian products over the same base set. (Contributed by Jeff Madsen, 2-Sep-2009.)
Assertion
Ref Expression
inixp  |-  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C )  =  X_ x  e.  A  ( B  i^i  C )
Distinct variable group:    x, A
Allowed substitution hints:    B( x)    C( x)

Proof of Theorem inixp
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 an4 865 . . . 4  |-  ( ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
) )  <->  ( (
f  Fn  A  /\  f  Fn  A )  /\  ( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( f `  x
)  e.  C ) ) )
2 anidm 676 . . . . 5  |-  ( ( f  Fn  A  /\  f  Fn  A )  <->  f  Fn  A )
3 r19.26 3064 . . . . . 6  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <-> 
( A. x  e.  A  ( f `  x )  e.  B  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
4 elin 3796 . . . . . . . 8  |-  ( ( f `  x )  e.  ( B  i^i  C )  <->  ( ( f `
 x )  e.  B  /\  ( f `
 x )  e.  C ) )
54bicomi 214 . . . . . . 7  |-  ( ( ( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <-> 
( f `  x
)  e.  ( B  i^i  C ) )
65ralbii 2980 . . . . . 6  |-  ( A. x  e.  A  (
( f `  x
)  e.  B  /\  ( f `  x
)  e.  C )  <->  A. x  e.  A  ( f `  x
)  e.  ( B  i^i  C ) )
73, 6bitr3i 266 . . . . 5  |-  ( ( A. x  e.  A  ( f `  x
)  e.  B  /\  A. x  e.  A  ( f `  x )  e.  C )  <->  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) )
82, 7anbi12i 733 . . . 4  |-  ( ( ( f  Fn  A  /\  f  Fn  A
)  /\  ( A. x  e.  A  (
f `  x )  e.  B  /\  A. x  e.  A  ( f `  x )  e.  C
) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) ) )
91, 8bitri 264 . . 3  |-  ( ( ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  C
) )  <->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  ( B  i^i  C ) ) )
10 vex 3203 . . . . 5  |-  f  e. 
_V
1110elixp 7915 . . . 4  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  B ) )
1210elixp 7915 . . . 4  |-  ( f  e.  X_ x  e.  A  C 
<->  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) )
1311, 12anbi12i 733 . . 3  |-  ( ( f  e.  X_ x  e.  A  B  /\  f  e.  X_ x  e.  A  C )  <->  ( (
f  Fn  A  /\  A. x  e.  A  ( f `  x )  e.  B )  /\  ( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  C ) ) )
1410elixp 7915 . . 3  |-  ( f  e.  X_ x  e.  A  ( B  i^i  C )  <-> 
( f  Fn  A  /\  A. x  e.  A  ( f `  x
)  e.  ( B  i^i  C ) ) )
159, 13, 143bitr4i 292 . 2  |-  ( ( f  e.  X_ x  e.  A  B  /\  f  e.  X_ x  e.  A  C )  <->  f  e.  X_ x  e.  A  ( B  i^i  C ) )
1615ineqri 3806 1  |-  ( X_ x  e.  A  B  i^i  X_ x  e.  A  C )  =  X_ x  e.  A  ( B  i^i  C )
Colors of variables: wff setvar class
Syntax hints:    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    Fn wfn 5883   ` cfv 5888   X_cixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-iota 5851  df-fun 5890  df-fn 5891  df-fv 5896  df-ixp 7909
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator