HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  isch Structured version   Visualization version   Unicode version

Theorem isch 28079
Description: Closed subspace  H of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
Assertion
Ref Expression
isch  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  (  ~~>v  "
( H  ^m  NN ) )  C_  H
) )

Proof of Theorem isch
Dummy variable  h is distinct from all other variables.
StepHypRef Expression
1 oveq1 6657 . . . 4  |-  ( h  =  H  ->  (
h  ^m  NN )  =  ( H  ^m  NN ) )
21imaeq2d 5466 . . 3  |-  ( h  =  H  ->  (  ~~>v  " ( h  ^m  NN ) )  =  ( 
~~>v  " ( H  ^m  NN ) ) )
3 id 22 . . 3  |-  ( h  =  H  ->  h  =  H )
42, 3sseq12d 3634 . 2  |-  ( h  =  H  ->  (
(  ~~>v  " ( h  ^m  NN ) )  C_  h  <->  ( 
~~>v  " ( H  ^m  NN ) )  C_  H
) )
5 df-ch 28078 . 2  |-  CH  =  { h  e.  SH  |  (  ~~>v  " (
h  ^m  NN )
)  C_  h }
64, 5elrab2 3366 1  |-  ( H  e.  CH  <->  ( H  e.  SH  /\  (  ~~>v  "
( H  ^m  NN ) )  C_  H
) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990    C_ wss 3574   "cima 5117  (class class class)co 6650    ^m cmap 7857   NNcn 11020    ~~>v chli 27784   SHcsh 27785   CHcch 27786
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-xp 5120  df-cnv 5122  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fv 5896  df-ov 6653  df-ch 28078
This theorem is referenced by:  isch2  28080  chsh  28081
  Copyright terms: Public domain W3C validator