HomeHome Metamath Proof Explorer
Theorem List (p. 281 of 426)
< Previous  Next >
Browser slow? Try the
Unicode version.

Mirrors  >  Metamath Home Page  >  MPE Home Page  >  Theorem List Contents  >  Recent Proofs       This page: Page List

Color key:    Metamath Proof Explorer  Metamath Proof Explorer
(1-27775)
  Hilbert Space Explorer  Hilbert Space Explorer
(27776-29300)
  Users' Mathboxes  Users' Mathboxes
(29301-42551)
 

Theorem List for Metamath Proof Explorer - 28001-28100   *Has distinct variable group(s)
TypeLabelDescription
Statement
 
Theoremnormneg 28001 The norm of a vector equals the norm of its negative. (Contributed by NM, 23-May-2005.) (New usage is discouraged.)
 |-  ( A  e.  ~H  ->  (
 normh `  ( -u 1  .h  A ) )  =  ( normh `  A )
 )
 
Theoremnormpyth 28002 Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 17-Oct-1999.) (New usage is discouraged.)
 |-  (
 ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  .ih  B )  =  0  ->  ( ( normh `  ( A  +h  B ) ) ^ 2 )  =  ( ( ( normh `  A ) ^ 2
 )  +  ( (
 normh `  B ) ^
 2 ) ) ) )
 
Theoremnormpyc 28003 Corollary to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of [Beran] p. 98. (Contributed by NM, 26-Oct-1999.) (New usage is discouraged.)
 |-  (
 ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( A  .ih  B )  =  0  ->  ( normh `  A )  <_  ( normh `  ( A  +h  B ) ) ) )
 
Theoremnorm3difi 28004 Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
 |-  A  e.  ~H   &    |-  B  e.  ~H   &    |-  C  e.  ~H   =>    |-  ( normh `  ( A  -h  B ) )  <_  ( ( normh `  ( A  -h  C ) )  +  ( normh `  ( C  -h  B ) ) )
 
Theoremnorm3adifii 28005 Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 30-Sep-1999.) (New usage is discouraged.)
 |-  A  e.  ~H   &    |-  B  e.  ~H   &    |-  C  e.  ~H   =>    |-  ( abs `  (
 ( normh `  ( A  -h  C ) )  -  ( normh `  ( B  -h  C ) ) ) )  <_  ( normh `  ( A  -h  B ) )
 
Theoremnorm3lem 28006 Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
 |-  A  e.  ~H   &    |-  B  e.  ~H   &    |-  C  e.  ~H   &    |-  D  e.  RR   =>    |-  (
 ( ( normh `  ( A  -h  C ) )  <  ( D  / 
 2 )  /\  ( normh `  ( C  -h  B ) )  < 
 ( D  /  2
 ) )  ->  ( normh `  ( A  -h  B ) )  <  D )
 
Theoremnorm3dif 28007 Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 20-Apr-2006.) (New usage is discouraged.)
 |-  (
 ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( normh `  ( A  -h  B ) )  <_  ( ( normh `  ( A  -h  C ) )  +  ( normh `  ( C  -h  B ) ) ) )
 
Theoremnorm3dif2 28008 Norm of differences around common element. (Contributed by NM, 18-Apr-2007.) (New usage is discouraged.)
 |-  (
 ( A  e.  ~H  /\  B  e.  ~H  /\  C  e.  ~H )  ->  ( normh `  ( A  -h  B ) )  <_  ( ( normh `  ( C  -h  A ) )  +  ( normh `  ( C  -h  B ) ) ) )
 
Theoremnorm3lemt 28009 Lemma involving norm of differences in Hilbert space. (Contributed by NM, 18-Aug-1999.) (New usage is discouraged.)
 |-  (
 ( ( A  e.  ~H 
 /\  B  e.  ~H )  /\  ( C  e.  ~H 
 /\  D  e.  RR ) )  ->  ( ( ( normh `  ( A  -h  C ) )  < 
 ( D  /  2
 )  /\  ( normh `  ( C  -h  B ) )  <  ( D 
 /  2 ) ) 
 ->  ( normh `  ( A  -h  B ) )  <  D ) )
 
Theoremnorm3adifi 28010 Norm of differences around common element. Part of Lemma 3.6 of [Beran] p. 101. (Contributed by NM, 3-Oct-1999.) (New usage is discouraged.)
 |-  C  e.  ~H   =>    |-  ( ( A  e.  ~H 
 /\  B  e.  ~H )  ->  ( abs `  (
 ( normh `  ( A  -h  C ) )  -  ( normh `  ( B  -h  C ) ) ) )  <_  ( normh `  ( A  -h  B ) ) )
 
Theoremnormpari 28011 Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 21-Aug-1999.) (New usage is discouraged.)
 |-  A  e.  ~H   &    |-  B  e.  ~H   =>    |-  (
 ( ( normh `  ( A  -h  B ) ) ^ 2 )  +  ( ( normh `  ( A  +h  B ) ) ^ 2 ) )  =  ( ( 2  x.  ( ( normh `  A ) ^ 2
 ) )  +  (
 2  x.  ( (
 normh `  B ) ^
 2 ) ) )
 
Theoremnormpar 28012 Parallelogram law for norms. Remark 3.4(B) of [Beran] p. 98. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
 |-  (
 ( A  e.  ~H  /\  B  e.  ~H )  ->  ( ( ( normh `  ( A  -h  B ) ) ^ 2
 )  +  ( (
 normh `  ( A  +h  B ) ) ^
 2 ) )  =  ( ( 2  x.  ( ( normh `  A ) ^ 2 ) )  +  ( 2  x.  ( ( normh `  B ) ^ 2 ) ) ) )
 
Theoremnormpar2i 28013 Corollary of parallelogram law for norms. Part of Lemma 3.6 of [Beran] p. 100. (Contributed by NM, 5-Oct-1999.) (New usage is discouraged.)
 |-  A  e.  ~H   &    |-  B  e.  ~H   &    |-  C  e.  ~H   =>    |-  ( ( normh `  ( A  -h  B ) ) ^ 2 )  =  ( ( ( 2  x.  ( ( normh `  ( A  -h  C ) ) ^ 2
 ) )  +  (
 2  x.  ( (
 normh `  ( B  -h  C ) ) ^
 2 ) ) )  -  ( ( normh `  ( ( A  +h  B )  -h  (
 2  .h  C ) ) ) ^ 2
 ) )
 
Theorempolid2i 28014 Generalized polarization identity. Generalization of Exercise 4(a) of [ReedSimon] p. 63. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
 |-  A  e.  ~H   &    |-  B  e.  ~H   &    |-  C  e.  ~H   &    |-  D  e.  ~H   =>    |-  ( A  .ih  B )  =  ( ( ( ( ( A  +h  C )  .ih  ( D  +h  B ) )  -  ( ( A  -h  C )  .ih  ( D  -h  B ) ) )  +  ( _i 
 x.  ( ( ( A  +h  ( _i 
 .h  C ) ) 
 .ih  ( D  +h  ( _i  .h  B ) ) )  -  ( ( A  -h  ( _i  .h  C ) )  .ih  ( D  -h  ( _i  .h  B ) ) ) ) ) )  / 
 4 )
 
Theorempolidi 28015 Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 27941. (Contributed by NM, 30-Jun-2005.) (New usage is discouraged.)
 |-  A  e.  ~H   &    |-  B  e.  ~H   =>    |-  ( A  .ih  B )  =  ( ( ( ( ( normh `  ( A  +h  B ) ) ^
 2 )  -  (
 ( normh `  ( A  -h  B ) ) ^
 2 ) )  +  ( _i  x.  (
 ( ( normh `  ( A  +h  ( _i  .h  B ) ) ) ^ 2 )  -  ( ( normh `  ( A  -h  ( _i  .h  B ) ) ) ^ 2 ) ) ) )  /  4
 )
 
Theorempolid 28016 Polarization identity. Recovers inner product from norm. Exercise 4(a) of [ReedSimon] p. 63. The outermost operation is + instead of - due to our mathematicians' (rather than physicists') version of axiom ax-his3 27941. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
 |-  (
 ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A  .ih  B )  =  ( (
 ( ( ( normh `  ( A  +h  B ) ) ^ 2
 )  -  ( (
 normh `  ( A  -h  B ) ) ^
 2 ) )  +  ( _i  x.  (
 ( ( normh `  ( A  +h  ( _i  .h  B ) ) ) ^ 2 )  -  ( ( normh `  ( A  -h  ( _i  .h  B ) ) ) ^ 2 ) ) ) )  /  4
 ) )
 
19.2.3  Relate Hilbert space to normed complex vector spaces
 
Theoremhilablo 28017 Hilbert space vector addition is an Abelian group operation. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
 |-  +h  e.  AbelOp
 
Theoremhilid 28018 The group identity element of Hilbert space vector addition is the zero vector. (Contributed by NM, 16-Apr-2007.) (New usage is discouraged.)
 |-  (GId ` 
 +h  )  =  0h
 
Theoremhilvc 28019 Hilbert space is a complex vector space. Vector addition is  +h, and scalar product is  .h. (Contributed by NM, 15-Apr-2007.) (New usage is discouraged.)
 |-  <.  +h  ,  .h  >.  e.  CVecOLD
 
Theoremhilnormi 28020 Hilbert space norm in terms of vector space norm. (Contributed by NM, 11-Sep-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  ~H  =  ( BaseSet `  U )   &    |-  .ih  =  ( .iOLD `  U )   &    |-  U  e.  NrmCVec   =>    |- 
 normh  =  ( normCV `  U )
 
Theoremhilhhi 28021 Deduce the structure of Hilbert space from its components. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
 |-  ~H  =  ( BaseSet `  U )   &    |-  +h  =  ( +v `  U )   &    |- 
 .h  =  ( .sOLD `  U )   &    |-  .ih  =  ( .iOLD `  U )   &    |-  U  e.  NrmCVec   =>    |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.
 
Theoremhhnv 28022 Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |-  U  e.  NrmCVec
 
Theoremhhva 28023 The group (addition) operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |- 
 +h  =  ( +v
 `  U )
 
Theoremhhba 28024 The base set of Hilbert space. This theorem provides an independent proof of df-hba 27826 (see comments in that definition). (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |- 
 ~H  =  ( BaseSet `  U )
 
Theoremhh0v 28025 The zero vector of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |- 
 0h  =  ( 0vec `  U )
 
Theoremhhsm 28026 The scalar product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |- 
 .h  =  ( .sOLD `  U )
 
Theoremhhvs 28027 The vector subtraction operation of Hilbert space. (Contributed by NM, 13-Dec-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |- 
 -h  =  ( -v
 `  U )
 
Theoremhhnm 28028 The norm function of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |- 
 normh  =  ( normCV `  U )
 
Theoremhhims 28029 The induced metric of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   &    |-  D  =  ( normh  o. 
 -h  )   =>    |-  D  =  ( IndMet `  U )
 
Theoremhhims2 28030 Hilbert space distance metric. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   &    |-  D  =  ( IndMet `  U )   =>    |-  D  =  ( normh  o. 
 -h  )
 
Theoremhhmet 28031 The induced metric of Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   &    |-  D  =  ( IndMet `  U )   =>    |-  D  e.  ( Met `  ~H )
 
Theoremhhxmet 28032 The induced metric of Hilbert space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   &    |-  D  =  ( IndMet `  U )   =>    |-  D  e.  ( *Met `  ~H )
 
Theoremhhmetdval 28033 Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   &    |-  D  =  ( IndMet `  U )   =>    |-  ( ( A  e.  ~H 
 /\  B  e.  ~H )  ->  ( A D B )  =  ( normh `  ( A  -h  B ) ) )
 
Theoremhhip 28034 The inner product operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (Revised by Mario Carneiro, 16-Nov-2013.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |- 
 .ih  =  ( .iOLD `  U )
 
Theoremhhph 28035 The Hilbert space of the Hilbert Space Explorer is an inner product space. (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |-  U  e.  CPreHil OLD
 
19.2.4  Bunjakovaskij-Cauchy-Schwarz inequality
 
TheorembcsiALT 28036 Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 11-Oct-1999.) (New usage is discouraged.) (Proof modification is discouraged.)
 |-  A  e.  ~H   &    |-  B  e.  ~H   =>    |-  ( abs `  ( A  .ih  B ) )  <_  (
 ( normh `  A )  x.  ( normh `  B )
 )
 
TheorembcsiHIL 28037 Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Proved from ZFC version.) (Contributed by NM, 24-Nov-2007.) (New usage is discouraged.)
 |-  A  e.  ~H   &    |-  B  e.  ~H   =>    |-  ( abs `  ( A  .ih  B ) )  <_  (
 ( normh `  A )  x.  ( normh `  B )
 )
 
Theorembcs 28038 Bunjakovaskij-Cauchy-Schwarz inequality. Remark 3.4 of [Beran] p. 98. (Contributed by NM, 16-Feb-2006.) (New usage is discouraged.)
 |-  (
 ( A  e.  ~H  /\  B  e.  ~H )  ->  ( abs `  ( A  .ih  B ) ) 
 <_  ( ( normh `  A )  x.  ( normh `  B ) ) )
 
Theorembcs2 28039 Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 28037. (Contributed by NM, 24-May-2006.) (New usage is discouraged.)
 |-  (
 ( A  e.  ~H  /\  B  e.  ~H  /\  ( normh `  A )  <_  1 )  ->  ( abs `  ( A  .ih  B ) )  <_  ( normh `  B ) )
 
Theorembcs3 28040 Corollary of the Bunjakovaskij-Cauchy-Schwarz inequality bcsiHIL 28037. (Contributed by NM, 26-May-2006.) (New usage is discouraged.)
 |-  (
 ( A  e.  ~H  /\  B  e.  ~H  /\  ( normh `  B )  <_  1 )  ->  ( abs `  ( A  .ih  B ) )  <_  ( normh `  A ) )
 
19.3  Cauchy sequences and completeness axiom
 
19.3.1  Cauchy sequences and limits
 
Theoremhcau 28041* Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ( F  e.  Cauchy  <->  ( F : NN
 --> ~H  /\  A. x  e.  RR+  E. y  e. 
 NN  A. z  e.  ( ZZ>=
 `  y ) (
 normh `  ( ( F `
  y )  -h  ( F `  z ) ) )  <  x ) )
 
Theoremhcauseq 28042 A Cauchy sequences on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ( F  e.  Cauchy  ->  F : NN --> ~H )
 
Theoremhcaucvg 28043* A Cauchy sequence on a Hilbert space converges. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  (
 ( F  e.  Cauchy  /\  A  e.  RR+ )  ->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z ) ) )  <  A )
 
Theoremseq1hcau 28044* A sequence on a Hilbert space is a Cauchy sequence if it converges. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ( F : NN --> ~H  ->  ( F  e.  Cauchy  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  y )  -h  ( F `  z ) ) )  <  x ) )
 
Theoremhlimi 28045* Express the predicate: The limit of vector sequence  F in a Hilbert space is  A, i.e.  F converges to  A. This means that for any real  x, no matter how small, there always exists an integer  y such that the norm of any later vector in the sequence minus the limit is less than  x. Definition of converge in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  ( F  ~~>v  A  <->  ( ( F : NN --> ~H  /\  A  e.  ~H )  /\  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A ) )  <  x ) )
 
Theoremhlimseqi 28046 A sequence with a limit on a Hilbert space is a sequence. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  ( F  ~~>v  A  ->  F : NN --> ~H )
 
Theoremhlimveci 28047 Closure of the limit of a sequence on Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  ( F  ~~>v  A  ->  A  e.  ~H )
 
Theoremhlimconvi 28048* Convergence of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  ( ( F  ~~>v  A 
 /\  B  e.  RR+ )  ->  E. y  e.  NN  A. z  e.  ( ZZ>= `  y ) ( normh `  ( ( F `  z )  -h  A ) )  <  B )
 
Theoremhlim2 28049* The limit of a sequence on a Hilbert space. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  (
 ( F : NN --> ~H  /\  A  e.  ~H )  ->  ( F  ~~>v  A  <->  A. x  e.  RR+  E. y  e.  NN  A. z  e.  ( ZZ>= `  y )
 ( normh `  ( ( F `  z )  -h  A ) )  < 
 x ) )
 
Theoremhlimadd 28050* Limit of the sum of two sequences in a Hilbert vector space. (Contributed by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
 |-  ( ph  ->  F : NN --> ~H )   &    |-  ( ph  ->  G : NN --> ~H )   &    |-  ( ph  ->  F  ~~>v  A )   &    |-  ( ph  ->  G  ~~>v  B )   &    |-  H  =  ( n  e.  NN  |->  ( ( F `
  n )  +h  ( G `  n ) ) )   =>    |-  ( ph  ->  H  ~~>v  ( A  +h  B ) )
 
19.3.2  Derivation of the completeness axiom from ZF set theory
 
Theoremhilmet 28051 The Hilbert space norm determines a metric space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.)
 |-  D  =  ( normh  o.  -h  )   =>    |-  D  e.  ( Met `  ~H )
 
Theoremhilxmet 28052 The Hilbert space norm determines a metric space. (Contributed by Mario Carneiro, 10-Sep-2015.) (New usage is discouraged.)
 |-  D  =  ( normh  o.  -h  )   =>    |-  D  e.  ( *Met `  ~H )
 
Theoremhilmetdval 28053 Value of the distance function of the metric space of Hilbert space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.)
 |-  D  =  ( normh  o.  -h  )   =>    |-  (
 ( A  e.  ~H  /\  B  e.  ~H )  ->  ( A D B )  =  ( normh `  ( A  -h  B ) ) )
 
Theoremhilims 28054 Hilbert space distance metric. (Contributed by NM, 13-Sep-2007.) (New usage is discouraged.)
 |-  ~H  =  ( BaseSet `  U )   &    |-  +h  =  ( +v `  U )   &    |- 
 .h  =  ( .sOLD `  U )   &    |-  .ih  =  ( .iOLD `  U )   &    |-  D  =  ( IndMet `  U )   &    |-  U  e.  NrmCVec   =>    |-  D  =  (
 normh  o.  -h  )
 
Theoremhhcau 28055 The Cauchy sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   &    |-  D  =  ( IndMet `  U )   =>    |-  Cauchy  =  ( ( Cau `  D )  i^i  ( ~H  ^m  NN ) )
 
Theoremhhlm 28056 The limit sequences of Hilbert space. (Contributed by NM, 19-Nov-2007.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   &    |-  D  =  ( IndMet `  U )   &    |-  J  =  (
 MetOpen `  D )   =>    |-  ~~>v  =  ( ( ~~> t `  J )  |`  ( ~H  ^m  NN ) )
 
Theoremhhcmpl 28057* Lemma used for derivation of the completeness axiom ax-hcompl 28059 from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   &    |-  D  =  ( IndMet `  U )   &    |-  J  =  (
 MetOpen `  D )   &    |-  ( F  e.  ( Cau `  D )  ->  E. x  e.  ~H  F ( ~~> t `  J ) x )   =>    |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
 
Theoremhilcompl 28058* Lemma used for derivation of the completeness axiom ax-hcompl 28059 from ZFC Hilbert space theory. The first five hypotheses would be satisfied by the definitions described in ax-hilex 27856; the 6th would be satisfied by eqid 2622; the 7th by a given fixed Hilbert space; and the last by theorem hlcompl 27771. (Contributed by NM, 13-Sep-2007.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ~H  =  ( BaseSet `  U )   &    |-  +h  =  ( +v `  U )   &    |- 
 .h  =  ( .sOLD `  U )   &    |-  .ih  =  ( .iOLD `  U )   &    |-  D  =  ( IndMet `  U )   &    |-  J  =  (
 MetOpen `  D )   &    |-  U  e.  CHilOLD   &    |-  ( F  e.  ( Cau `  D )  ->  E. x  e.  ~H  F ( ~~> t `  J ) x )   =>    |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
 
19.3.3  Completeness postulate for a Hilbert space
 
Axiomax-hcompl 28059* Completeness of a Hilbert space. (Contributed by NM, 7-Aug-2000.) (New usage is discouraged.)
 |-  ( F  e.  Cauchy  ->  E. x  e.  ~H  F  ~~>v  x )
 
19.3.4  Relate Hilbert space to ZFC pre-Hilbert and Hilbert spaces
 
Theoremhhcms 28060 The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   &    |-  D  =  ( IndMet `  U )   =>    |-  D  e.  ( CMet ` 
 ~H )
 
Theoremhhhl 28061 The Hilbert space structure is a complex Hilbert space. (Contributed by NM, 10-Apr-2008.) (New usage is discouraged.)
 |-  U  =  <. <.  +h  ,  .h  >. ,  normh >.   =>    |-  U  e.  CHilOLD
 
Theoremhilcms 28062 The Hilbert space norm determines a complete metric space. (Contributed by NM, 17-Apr-2007.) (New usage is discouraged.)
 |-  D  =  ( normh  o.  -h  )   =>    |-  D  e.  ( CMet `  ~H )
 
Theoremhilhl 28063 The Hilbert space of the Hilbert Space Explorer is a complex Hilbert space. (Contributed by Steve Rodriguez, 29-Apr-2007.) (New usage is discouraged.)
 |-  <. <.  +h  ,  .h  >. ,  normh >.  e.  CHilOLD
 
19.4  Subspaces and projections
 
19.4.1  Subspaces
 
Definitiondf-sh 28064 Define the set of subspaces of a Hilbert space. See issh 28065 for its membership relation. Basically, a subspace is a subset of a Hilbert space that acts like a vector space. From Definition of [Beran] p. 95. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  SH  =  { h  e.  ~P ~H  |  ( 0h  e.  h  /\  (  +h  " ( h  X.  h ) ) 
 C_  h  /\  (  .h  " ( CC  X.  h ) )  C_  h ) }
 
Theoremissh 28065 Subspace  H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. (Contributed by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  ( H  e.  SH  <->  ( ( H 
 C_  ~H  /\  0h  e.  H )  /\  ( (  +h  " ( H  X.  H ) ) 
 C_  H  /\  (  .h  " ( CC  X.  H ) )  C_  H ) ) )
 
Theoremissh2 28066* Subspace  H of a Hilbert space. A subspace is a subset of Hilbert space which contains the zero vector and is closed under vector addition and scalar multiplication. Definition of [Beran] p. 95. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  ( H  e.  SH  <->  ( ( H 
 C_  ~H  /\  0h  e.  H )  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H ) ) )
 
Theoremshss 28067 A subspace is a subset of Hilbert space. (Contributed by NM, 9-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  ( H  e.  SH  ->  H 
 C_  ~H )
 
Theoremshel 28068 A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 14-Dec-2004.) (New usage is discouraged.)
 |-  (
 ( H  e.  SH  /\  A  e.  H ) 
 ->  A  e.  ~H )
 
Theoremshex 28069 The set of subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
 |-  SH  e.  _V
 
Theoremshssii 28070 A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
 |-  H  e.  SH   =>    |-  H  C_  ~H
 
Theoremsheli 28071 A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
 |-  H  e.  SH   =>    |-  ( A  e.  H  ->  A  e.  ~H )
 
Theoremshelii 28072 A member of a subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
 |-  H  e.  SH   &    |-  A  e.  H   =>    |-  A  e.  ~H
 
Theoremsh0 28073 The zero vector belongs to any subspace of a Hilbert space. (Contributed by NM, 11-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  ( H  e.  SH  ->  0h  e.  H )
 
Theoremshaddcl 28074 Closure of vector addition in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.)
 |-  (
 ( H  e.  SH  /\  A  e.  H  /\  B  e.  H )  ->  ( A  +h  B )  e.  H )
 
Theoremshmulcl 28075 Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999.) (New usage is discouraged.)
 |-  (
 ( H  e.  SH  /\  A  e.  CC  /\  B  e.  H )  ->  ( A  .h  B )  e.  H )
 
Theoremissh3 28076* Subspace  H of a Hilbert space. (Contributed by NM, 16-Aug-1999.) (New usage is discouraged.)
 |-  ( H  C_  ~H  ->  ( H  e.  SH  <->  ( 0h  e.  H  /\  ( A. x  e.  H  A. y  e.  H  ( x  +h  y )  e.  H  /\  A. x  e.  CC  A. y  e.  H  ( x  .h  y )  e.  H ) ) ) )
 
Theoremshsubcl 28077 Closure of vector subtraction in a subspace of a Hilbert space. (Contributed by NM, 18-Oct-1999.) (New usage is discouraged.)
 |-  (
 ( H  e.  SH  /\  A  e.  H  /\  B  e.  H )  ->  ( A  -h  B )  e.  H )
 
19.4.2  Closed subspaces
 
Definitiondf-ch 28078 Define the set of closed subspaces of a Hilbert space. A closed subspace is one in which the limit of every convergent sequence in the subspace belongs to the subspace. For its membership relation, see isch 28079. From Definition of [Beran] p. 107. Alternate definitions are given by isch2 28080 and isch3 28098. (Contributed by NM, 17-Aug-1999.) (New usage is discouraged.)
 |-  CH  =  { h  e.  SH  |  (  ~~>v  " ( h  ^m  NN ) ) 
 C_  h }
 
Theoremisch 28079 Closed subspace  H of a Hilbert space. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  ( H  e.  CH  <->  ( H  e.  SH  /\  (  ~~>v  " ( H  ^m  NN ) ) 
 C_  H ) )
 
Theoremisch2 28080* Closed subspace  H of a Hilbert space. Definition of [Beran] p. 107. (Contributed by NM, 17-Aug-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f A. x ( ( f : NN --> H  /\  f  ~~>v  x )  ->  x  e.  H )
 ) )
 
Theoremchsh 28081 A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  ( H  e.  CH  ->  H  e.  SH )
 
Theoremchsssh 28082 Closed subspaces are subspaces in a Hilbert space. (Contributed by NM, 29-May-1999.) (Revised by Mario Carneiro, 23-Dec-2013.) (New usage is discouraged.)
 |-  CH  C_  SH
 
Theoremchex 28083 The set of closed subspaces of a Hilbert space exists (is a set). (Contributed by NM, 23-Oct-1999.) (New usage is discouraged.)
 |-  CH  e.  _V
 
Theoremchshii 28084 A closed subspace is a subspace. (Contributed by NM, 19-Oct-1999.) (New usage is discouraged.)
 |-  H  e.  CH   =>    |-  H  e.  SH
 
Theoremch0 28085 The zero vector belongs to any closed subspace of a Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.)
 |-  ( H  e.  CH  ->  0h  e.  H )
 
Theoremchss 28086 A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 24-Aug-1999.) (New usage is discouraged.)
 |-  ( H  e.  CH  ->  H  C_ 
 ~H )
 
Theoremchel 28087 A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 15-Dec-2004.) (New usage is discouraged.)
 |-  (
 ( H  e.  CH  /\  A  e.  H ) 
 ->  A  e.  ~H )
 
Theoremchssii 28088 A closed subspace of a Hilbert space is a subset of Hilbert space. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
 |-  H  e.  CH   =>    |-  H  C_  ~H
 
Theoremcheli 28089 A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
 |-  H  e.  CH   =>    |-  ( A  e.  H  ->  A  e.  ~H )
 
Theoremchelii 28090 A member of a closed subspace of a Hilbert space is a vector. (Contributed by NM, 6-Oct-1999.) (New usage is discouraged.)
 |-  H  e.  CH   &    |-  A  e.  H   =>    |-  A  e.  ~H
 
Theoremchlimi 28091 The limit property of a closed subspace of a Hilbert space. (Contributed by NM, 14-Sep-1999.) (New usage is discouraged.)
 |-  A  e.  _V   =>    |-  ( ( H  e.  CH 
 /\  F : NN --> H  /\  F  ~~>v  A ) 
 ->  A  e.  H )
 
Theoremhlim0 28092 The zero sequence in Hilbert space converges to the zero vector. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ( NN  X.  { 0h }
 )  ~~>v  0h
 
Theoremhlimcaui 28093 If a sequence in Hilbert space subset converges to a limit, it is a Cauchy sequence. (Contributed by NM, 17-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ( F  ~~>v  A  ->  F  e.  Cauchy )
 
Theoremhlimf 28094 Function-like behavior of the convergence relation. (Contributed by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ~~>v  : dom  ~~>v  --> ~H
 
Theoremhlimuni 28095 A Hilbert space sequence converges to at most one limit. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 2-May-2015.) (New usage is discouraged.)
 |-  (
 ( F  ~~>v  A  /\  F  ~~>v  B )  ->  A  =  B )
 
Theoremhlimreui 28096* The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ( E. x  e.  H  F  ~~>v  x  <->  E! x  e.  H  F  ~~>v  x )
 
Theoremhlimeui 28097* The limit of a Hilbert space sequence is unique. (Contributed by NM, 19-Aug-1999.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ( E. x  F  ~~>v  x  <->  E! x  F  ~~>v  x )
 
Theoremisch3 28098* A Hilbert subspace is closed iff it is complete. A complete subspace is one in which every Cauchy sequence of vectors in the subspace converges to a member of the subspace (Definition of complete subspace in [Beran] p. 96). Remark 3.12 of [Beran] p. 107. (Contributed by NM, 24-Dec-2001.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.)
 |-  ( H  e.  CH  <->  ( H  e.  SH  /\  A. f  e.  Cauchy  ( f : NN --> H  ->  E. x  e.  H  f  ~~>v  x ) ) )
 
Theoremchcompl 28099* Completeness of a closed subspace of Hilbert space. (Contributed by NM, 4-Oct-1999.) (New usage is discouraged.)
 |-  (
 ( H  e.  CH  /\  F  e.  Cauchy  /\  F : NN --> H )  ->  E. x  e.  H  F  ~~>v  x )
 
Theoremhelch 28100 The unit Hilbert lattice element (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of [Kalmbach] p. 65. (Contributed by NM, 6-Sep-1999.) (New usage is discouraged.)
 |-  ~H  e.  CH
    < Previous  Next >

Page List
Jump to page: Contents  1 1-100 2 101-200 3 201-300 4 301-400 5 401-500 6 501-600 7 601-700 8 701-800 9 801-900 10 901-1000 11 1001-1100 12 1101-1200 13 1201-1300 14 1301-1400 15 1401-1500 16 1501-1600 17 1601-1700 18 1701-1800 19 1801-1900 20 1901-2000 21 2001-2100 22 2101-2200 23 2201-2300 24 2301-2400 25 2401-2500 26 2501-2600 27 2601-2700 28 2701-2800 29 2801-2900 30 2901-3000 31 3001-3100 32 3101-3200 33 3201-3300 34 3301-3400 35 3401-3500 36 3501-3600 37 3601-3700 38 3701-3800 39 3801-3900 40 3901-4000 41 4001-4100 42 4101-4200 43 4201-4300 44 4301-4400 45 4401-4500 46 4501-4600 47 4601-4700 48 4701-4800 49 4801-4900 50 4901-5000 51 5001-5100 52 5101-5200 53 5201-5300 54 5301-5400 55 5401-5500 56 5501-5600 57 5601-5700 58 5701-5800 59 5801-5900 60 5901-6000 61 6001-6100 62 6101-6200 63 6201-6300 64 6301-6400 65 6401-6500 66 6501-6600 67 6601-6700 68 6701-6800 69 6801-6900 70 6901-7000 71 7001-7100 72 7101-7200 73 7201-7300 74 7301-7400 75 7401-7500 76 7501-7600 77 7601-7700 78 7701-7800 79 7801-7900 80 7901-8000 81 8001-8100 82 8101-8200 83 8201-8300 84 8301-8400 85 8401-8500 86 8501-8600 87 8601-8700 88 8701-8800 89 8801-8900 90 8901-9000 91 9001-9100 92 9101-9200 93 9201-9300 94 9301-9400 95 9401-9500 96 9501-9600 97 9601-9700 98 9701-9800 99 9801-9900 100 9901-10000 101 10001-10100 102 10101-10200 103 10201-10300 104 10301-10400 105 10401-10500 106 10501-10600 107 10601-10700 108 10701-10800 109 10801-10900 110 10901-11000 111 11001-11100 112 11101-11200 113 11201-11300 114 11301-11400 115 11401-11500 116 11501-11600 117 11601-11700 118 11701-11800 119 11801-11900 120 11901-12000 121 12001-12100 122 12101-12200 123 12201-12300 124 12301-12400 125 12401-12500 126 12501-12600 127 12601-12700 128 12701-12800 129 12801-12900 130 12901-13000 131 13001-13100 132 13101-13200 133 13201-13300 134 13301-13400 135 13401-13500 136 13501-13600 137 13601-13700 138 13701-13800 139 13801-13900 140 13901-14000 141 14001-14100 142 14101-14200 143 14201-14300 144 14301-14400 145 14401-14500 146 14501-14600 147 14601-14700 148 14701-14800 149 14801-14900 150 14901-15000 151 15001-15100 152 15101-15200 153 15201-15300 154 15301-15400 155 15401-15500 156 15501-15600 157 15601-15700 158 15701-15800 159 15801-15900 160 15901-16000 161 16001-16100 162 16101-16200 163 16201-16300 164 16301-16400 165 16401-16500 166 16501-16600 167 16601-16700 168 16701-16800 169 16801-16900 170 16901-17000 171 17001-17100 172 17101-17200 173 17201-17300 174 17301-17400 175 17401-17500 176 17501-17600 177 17601-17700 178 17701-17800 179 17801-17900 180 17901-18000 181 18001-18100 182 18101-18200 183 18201-18300 184 18301-18400 185 18401-18500 186 18501-18600 187 18601-18700 188 18701-18800 189 18801-18900 190 18901-19000 191 19001-19100 192 19101-19200 193 19201-19300 194 19301-19400 195 19401-19500 196 19501-19600 197 19601-19700 198 19701-19800 199 19801-19900 200 19901-20000 201 20001-20100 202 20101-20200 203 20201-20300 204 20301-20400 205 20401-20500 206 20501-20600 207 20601-20700 208 20701-20800 209 20801-20900 210 20901-21000 211 21001-21100 212 21101-21200 213 21201-21300 214 21301-21400 215 21401-21500 216 21501-21600 217 21601-21700 218 21701-21800 219 21801-21900 220 21901-22000 221 22001-22100 222 22101-22200 223 22201-22300 224 22301-22400 225 22401-22500 226 22501-22600 227 22601-22700 228 22701-22800 229 22801-22900 230 22901-23000 231 23001-23100 232 23101-23200 233 23201-23300 234 23301-23400 235 23401-23500 236 23501-23600 237 23601-23700 238 23701-23800 239 23801-23900 240 23901-24000 241 24001-24100 242 24101-24200 243 24201-24300 244 24301-24400 245 24401-24500 246 24501-24600 247 24601-24700 248 24701-24800 249 24801-24900 250 24901-25000 251 25001-25100 252 25101-25200 253 25201-25300 254 25301-25400 255 25401-25500 256 25501-25600 257 25601-25700 258 25701-25800 259 25801-25900 260 25901-26000 261 26001-26100 262 26101-26200 263 26201-26300 264 26301-26400 265 26401-26500 266 26501-26600 267 26601-26700 268 26701-26800 269 26801-26900 270 26901-27000 271 27001-27100 272 27101-27200 273 27201-27300 274 27301-27400 275 27401-27500 276 27501-27600 277 27601-27700 278 27701-27800 279 27801-27900 280 27901-28000 281 28001-28100 282 28101-28200 283 28201-28300 284 28301-28400 285 28401-28500 286 28501-28600 287 28601-28700 288 28701-28800 289 28801-28900 290 28901-29000 291 29001-29100 292 29101-29200 293 29201-29300 294 29301-29400 295 29401-29500 296 29501-29600 297 29601-29700 298 29701-29800 299 29801-29900 300 29901-30000 301 30001-30100 302 30101-30200 303 30201-30300 304 30301-30400 305 30401-30500 306 30501-30600 307 30601-30700 308 30701-30800 309 30801-30900 310 30901-31000 311 31001-31100 312 31101-31200 313 31201-31300 314 31301-31400 315 31401-31500 316 31501-31600 317 31601-31700 318 31701-31800 319 31801-31900 320 31901-32000 321 32001-32100 322 32101-32200 323 32201-32300 324 32301-32400 325 32401-32500 326 32501-32600 327 32601-32700 328 32701-32800 329 32801-32900 330 32901-33000 331 33001-33100 332 33101-33200 333 33201-33300 334 33301-33400 335 33401-33500 336 33501-33600 337 33601-33700 338 33701-33800 339 33801-33900 340 33901-34000 341 34001-34100 342 34101-34200 343 34201-34300 344 34301-34400 345 34401-34500 346 34501-34600 347 34601-34700 348 34701-34800 349 34801-34900 350 34901-35000 351 35001-35100 352 35101-35200 353 35201-35300 354 35301-35400 355 35401-35500 356 35501-35600 357 35601-35700 358 35701-35800 359 35801-35900 360 35901-36000 361 36001-36100 362 36101-36200 363 36201-36300 364 36301-36400 365 36401-36500 366 36501-36600 367 36601-36700 368 36701-36800 369 36801-36900 370 36901-37000 371 37001-37100 372 37101-37200 373 37201-37300 374 37301-37400 375 37401-37500 376 37501-37600 377 37601-37700 378 37701-37800 379 37801-37900 380 37901-38000 381 38001-38100 382 38101-38200 383 38201-38300 384 38301-38400 385 38401-38500 386 38501-38600 387 38601-38700 388 38701-38800 389 38801-38900 390 38901-39000 391 39001-39100 392 39101-39200 393 39201-39300 394 39301-39400 395 39401-39500 396 39501-39600 397 39601-39700 398 39701-39800 399 39801-39900 400 39901-40000 401 40001-40100 402 40101-40200 403 40201-40300 404 40301-40400 405 40401-40500 406 40501-40600 407 40601-40700 408 40701-40800 409 40801-40900 410 40901-41000 411 41001-41100 412 41101-41200 413 41201-41300 414 41301-41400 415 41401-41500 416 41501-41600 417 41601-41700 418 41701-41800 419 41801-41900 420 41901-42000 421 42001-42100 422 42101-42200 423 42201-42300 424 42301-42400 425 42401-42500 426 42501-42551
  Copyright terms: Public domain < Previous  Next >