| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iscmnd | Structured version Visualization version Unicode version | ||
| Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.) |
| Ref | Expression |
|---|---|
| iscmnd.b |
|
| iscmnd.p |
|
| iscmnd.g |
|
| iscmnd.c |
|
| Ref | Expression |
|---|---|
| iscmnd |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscmnd.g |
. . 3
| |
| 2 | iscmnd.c |
. . . . 5
| |
| 3 | 2 | 3expib 1268 |
. . . 4
|
| 4 | 3 | ralrimivv 2970 |
. . 3
|
| 5 | iscmnd.b |
. . . . 5
| |
| 6 | iscmnd.p |
. . . . . . . 8
| |
| 7 | 6 | oveqd 6667 |
. . . . . . 7
|
| 8 | 6 | oveqd 6667 |
. . . . . . 7
|
| 9 | 7, 8 | eqeq12d 2637 |
. . . . . 6
|
| 10 | 5, 9 | raleqbidv 3152 |
. . . . 5
|
| 11 | 5, 10 | raleqbidv 3152 |
. . . 4
|
| 12 | 11 | anbi2d 740 |
. . 3
|
| 13 | 1, 4, 12 | mpbi2and 956 |
. 2
|
| 14 | eqid 2622 |
. . 3
| |
| 15 | eqid 2622 |
. . 3
| |
| 16 | 14, 15 | iscmn 18200 |
. 2
|
| 17 | 13, 16 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-cmn 18195 |
| This theorem is referenced by: isabld 18206 subcmn 18242 prdscmnd 18264 iscrngd 18586 psrcrng 19413 xrsmcmn 19769 2zrngacmnd 41942 |
| Copyright terms: Public domain | W3C validator |