MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscmnd Structured version   Visualization version   Unicode version

Theorem iscmnd 18205
Description: Properties that determine a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypotheses
Ref Expression
iscmnd.b  |-  ( ph  ->  B  =  ( Base `  G ) )
iscmnd.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
iscmnd.g  |-  ( ph  ->  G  e.  Mnd )
iscmnd.c  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
Assertion
Ref Expression
iscmnd  |-  ( ph  ->  G  e. CMnd )
Distinct variable groups:    x, y, B    x, G, y    ph, x, y
Allowed substitution hints:    .+ ( x, y)

Proof of Theorem iscmnd
StepHypRef Expression
1 iscmnd.g . . 3  |-  ( ph  ->  G  e.  Mnd )
2 iscmnd.c . . . . 5  |-  ( (
ph  /\  x  e.  B  /\  y  e.  B
)  ->  ( x  .+  y )  =  ( y  .+  x ) )
323expib 1268 . . . 4  |-  ( ph  ->  ( ( x  e.  B  /\  y  e.  B )  ->  (
x  .+  y )  =  ( y  .+  x ) ) )
43ralrimivv 2970 . . 3  |-  ( ph  ->  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) )
5 iscmnd.b . . . . 5  |-  ( ph  ->  B  =  ( Base `  G ) )
6 iscmnd.p . . . . . . . 8  |-  ( ph  ->  .+  =  ( +g  `  G ) )
76oveqd 6667 . . . . . . 7  |-  ( ph  ->  ( x  .+  y
)  =  ( x ( +g  `  G
) y ) )
86oveqd 6667 . . . . . . 7  |-  ( ph  ->  ( y  .+  x
)  =  ( y ( +g  `  G
) x ) )
97, 8eqeq12d 2637 . . . . . 6  |-  ( ph  ->  ( ( x  .+  y )  =  ( y  .+  x )  <-> 
( x ( +g  `  G ) y )  =  ( y ( +g  `  G ) x ) ) )
105, 9raleqbidv 3152 . . . . 5  |-  ( ph  ->  ( A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )  <->  A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
115, 10raleqbidv 3152 . . . 4  |-  ( ph  ->  ( A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x )  <->  A. x  e.  ( Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
1211anbi2d 740 . . 3  |-  ( ph  ->  ( ( G  e. 
Mnd  /\  A. x  e.  B  A. y  e.  B  ( x  .+  y )  =  ( y  .+  x ) )  <->  ( G  e. 
Mnd  /\  A. x  e.  ( Base `  G
) A. y  e.  ( Base `  G
) ( x ( +g  `  G ) y )  =  ( y ( +g  `  G
) x ) ) ) )
131, 4, 12mpbi2and 956 . 2  |-  ( ph  ->  ( G  e.  Mnd  /\ 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
14 eqid 2622 . . 3  |-  ( Base `  G )  =  (
Base `  G )
15 eqid 2622 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
1614, 15iscmn 18200 . 2  |-  ( G  e. CMnd 
<->  ( G  e.  Mnd  /\ 
A. x  e.  (
Base `  G ) A. y  e.  ( Base `  G ) ( x ( +g  `  G
) y )  =  ( y ( +g  `  G ) x ) ) )
1713, 16sylibr 224 1  |-  ( ph  ->  G  e. CMnd )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   Mndcmnd 17294  CMndccmn 18193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-cmn 18195
This theorem is referenced by:  isabld  18206  subcmn  18242  prdscmnd  18264  iscrngd  18586  psrcrng  19413  xrsmcmn  19769  2zrngacmnd  41942
  Copyright terms: Public domain W3C validator