MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iscrng Structured version   Visualization version   Unicode version

Theorem iscrng 18554
Description: A commutative ring is a ring whose multiplication is a commutative monoid. (Contributed by Mario Carneiro, 7-Jan-2015.)
Hypothesis
Ref Expression
ringmgp.g  |-  G  =  (mulGrp `  R )
Assertion
Ref Expression
iscrng  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )

Proof of Theorem iscrng
Dummy variable  r is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . 4  |-  ( r  =  R  ->  (mulGrp `  r )  =  (mulGrp `  R ) )
2 ringmgp.g . . . 4  |-  G  =  (mulGrp `  R )
31, 2syl6eqr 2674 . . 3  |-  ( r  =  R  ->  (mulGrp `  r )  =  G )
43eleq1d 2686 . 2  |-  ( r  =  R  ->  (
(mulGrp `  r )  e. CMnd  <-> 
G  e. CMnd ) )
5 df-cring 18550 . 2  |-  CRing  =  {
r  e.  Ring  |  (mulGrp `  r )  e. CMnd }
64, 5elrab2 3366 1  |-  ( R  e.  CRing 
<->  ( R  e.  Ring  /\  G  e. CMnd ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   ` cfv 5888  CMndccmn 18193  mulGrpcmgp 18489   Ringcrg 18547   CRingccrg 18548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-cring 18550
This theorem is referenced by:  crngmgp  18555  crngring  18558  iscrng2  18563  crngpropd  18583  iscrngd  18586  prdscrngd  18613  subrgcrng  18784  psrcrng  19413
  Copyright terms: Public domain W3C validator