| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > iscvlat | Structured version Visualization version Unicode version | ||
| Description: The predicate "is an atomic lattice with the covering (or exchange) property". (Contributed by NM, 5-Nov-2012.) |
| Ref | Expression |
|---|---|
| iscvlat.b |
|
| iscvlat.l |
|
| iscvlat.j |
|
| iscvlat.a |
|
| Ref | Expression |
|---|---|
| iscvlat |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . 4
| |
| 2 | iscvlat.a |
. . . 4
| |
| 3 | 1, 2 | syl6eqr 2674 |
. . 3
|
| 4 | fveq2 6191 |
. . . . . 6
| |
| 5 | iscvlat.b |
. . . . . 6
| |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . 5
|
| 7 | fveq2 6191 |
. . . . . . . . . 10
| |
| 8 | iscvlat.l |
. . . . . . . . . 10
| |
| 9 | 7, 8 | syl6eqr 2674 |
. . . . . . . . 9
|
| 10 | 9 | breqd 4664 |
. . . . . . . 8
|
| 11 | 10 | notbid 308 |
. . . . . . 7
|
| 12 | eqidd 2623 |
. . . . . . . 8
| |
| 13 | fveq2 6191 |
. . . . . . . . . 10
| |
| 14 | iscvlat.j |
. . . . . . . . . 10
| |
| 15 | 13, 14 | syl6eqr 2674 |
. . . . . . . . 9
|
| 16 | 15 | oveqd 6667 |
. . . . . . . 8
|
| 17 | 12, 9, 16 | breq123d 4667 |
. . . . . . 7
|
| 18 | 11, 17 | anbi12d 747 |
. . . . . 6
|
| 19 | eqidd 2623 |
. . . . . . 7
| |
| 20 | 15 | oveqd 6667 |
. . . . . . 7
|
| 21 | 19, 9, 20 | breq123d 4667 |
. . . . . 6
|
| 22 | 18, 21 | imbi12d 334 |
. . . . 5
|
| 23 | 6, 22 | raleqbidv 3152 |
. . . 4
|
| 24 | 3, 23 | raleqbidv 3152 |
. . 3
|
| 25 | 3, 24 | raleqbidv 3152 |
. 2
|
| 26 | df-cvlat 34609 |
. 2
| |
| 27 | 25, 26 | elrab2 3366 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-iota 5851 df-fv 5896 df-ov 6653 df-cvlat 34609 |
| This theorem is referenced by: iscvlat2N 34611 cvlatl 34612 cvlexch1 34615 ishlat2 34640 |
| Copyright terms: Public domain | W3C validator |