Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cvlatl Structured version   Visualization version   Unicode version

Theorem cvlatl 34612
Description: An atomic lattice with the covering property is an atomic lattice. (Contributed by NM, 5-Nov-2012.)
Assertion
Ref Expression
cvlatl  |-  ( K  e.  CvLat  ->  K  e.  AtLat
)

Proof of Theorem cvlatl
Dummy variables  q  p  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2622 . . 3  |-  ( Base `  K )  =  (
Base `  K )
2 eqid 2622 . . 3  |-  ( le
`  K )  =  ( le `  K
)
3 eqid 2622 . . 3  |-  ( join `  K )  =  (
join `  K )
4 eqid 2622 . . 3  |-  ( Atoms `  K )  =  (
Atoms `  K )
51, 2, 3, 4iscvlat 34610 . 2  |-  ( K  e.  CvLat 
<->  ( K  e.  AtLat  /\ 
A. p  e.  (
Atoms `  K ) A. q  e.  ( Atoms `  K ) A. x  e.  ( Base `  K
) ( ( -.  p ( le `  K ) x  /\  p ( le `  K ) ( x ( join `  K
) q ) )  ->  q ( le
`  K ) ( x ( join `  K
) p ) ) ) )
65simplbi 476 1  |-  ( K  e.  CvLat  ->  K  e.  AtLat
)
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    e. wcel 1990   A.wral 2912   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   Atomscatm 34550   AtLatcal 34551   CvLatclc 34552
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-cvlat 34609
This theorem is referenced by:  cvllat  34613  cvlexch3  34619  cvlexch4N  34620  cvlatexchb1  34621  cvlcvr1  34626  cvlcvrp  34627  cvlatcvr1  34628  cvlsupr2  34630  hlatl  34647
  Copyright terms: Public domain W3C validator