MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isfin1a Structured version   Visualization version   Unicode version

Theorem isfin1a 9114
Description: Definition of a Ia-finite set. (Contributed by Stefan O'Rear, 16-May-2015.)
Assertion
Ref Expression
isfin1a  |-  ( A  e.  V  ->  ( A  e. FinIa 
<-> 
A. y  e.  ~P  A ( y  e. 
Fin  \/  ( A  \  y )  e.  Fin ) ) )
Distinct variable group:    y, A
Allowed substitution hint:    V( y)

Proof of Theorem isfin1a
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 pweq 4161 . . 3  |-  ( x  =  A  ->  ~P x  =  ~P A
)
2 difeq1 3721 . . . . 5  |-  ( x  =  A  ->  (
x  \  y )  =  ( A  \ 
y ) )
32eleq1d 2686 . . . 4  |-  ( x  =  A  ->  (
( x  \  y
)  e.  Fin  <->  ( A  \  y )  e.  Fin ) )
43orbi2d 738 . . 3  |-  ( x  =  A  ->  (
( y  e.  Fin  \/  ( x  \  y
)  e.  Fin )  <->  ( y  e.  Fin  \/  ( A  \  y
)  e.  Fin )
) )
51, 4raleqbidv 3152 . 2  |-  ( x  =  A  ->  ( A. y  e.  ~P  x ( y  e. 
Fin  \/  ( x  \  y )  e.  Fin ) 
<-> 
A. y  e.  ~P  A ( y  e. 
Fin  \/  ( A  \  y )  e.  Fin ) ) )
6 df-fin1a 9107 . 2  |- FinIa  =  {
x  |  A. y  e.  ~P  x ( y  e.  Fin  \/  (
x  \  y )  e.  Fin ) }
75, 6elab2g 3353 1  |-  ( A  e.  V  ->  ( A  e. FinIa 
<-> 
A. y  e.  ~P  A ( y  e. 
Fin  \/  ( A  \  y )  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    = wceq 1483    e. wcel 1990   A.wral 2912    \ cdif 3571   ~Pcpw 4158   Fincfn 7955  FinIacfin1a 9100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-pw 4160  df-fin1a 9107
This theorem is referenced by:  fin1ai  9115  fin11a  9205  enfin1ai  9206
  Copyright terms: Public domain W3C validator