MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  enfin1ai Structured version   Visualization version   Unicode version

Theorem enfin1ai 9206
Description: Ia-finiteness is a cardinal property. (Contributed by Mario Carneiro, 18-May-2015.)
Assertion
Ref Expression
enfin1ai  |-  ( A 
~~  B  ->  ( A  e. FinIa  ->  B  e. FinIa ) )

Proof of Theorem enfin1ai
Dummy variables  f  x are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ensym 8005 . . 3  |-  ( A 
~~  B  ->  B  ~~  A )
2 bren 7964 . . 3  |-  ( B 
~~  A  <->  E. f 
f : B -1-1-onto-> A )
31, 2sylib 208 . 2  |-  ( A 
~~  B  ->  E. f 
f : B -1-1-onto-> A )
4 elpwi 4168 . . . . . . 7  |-  ( x  e.  ~P B  ->  x  C_  B )
5 simplr 792 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  A  e. FinIa )
6 imassrn 5477 . . . . . . . . . 10  |-  ( f
" x )  C_  ran  f
7 f1of 6137 . . . . . . . . . . . 12  |-  ( f : B -1-1-onto-> A  ->  f : B
--> A )
87ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
f : B --> A )
9 frn 6053 . . . . . . . . . . 11  |-  ( f : B --> A  ->  ran  f  C_  A )
108, 9syl 17 . . . . . . . . . 10  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  ran  f  C_  A )
116, 10syl5ss 3614 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " x
)  C_  A )
12 fin1ai 9115 . . . . . . . . 9  |-  ( ( A  e. FinIa  /\  ( f " x )  C_  A )  ->  (
( f " x
)  e.  Fin  \/  ( A  \  (
f " x ) )  e.  Fin )
)
135, 11, 12syl2anc 693 . . . . . . . 8  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( f "
x )  e.  Fin  \/  ( A  \  (
f " x ) )  e.  Fin )
)
14 f1of1 6136 . . . . . . . . . . . 12  |-  ( f : B -1-1-onto-> A  ->  f : B -1-1-> A )
1514ad2antrr 762 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
f : B -1-1-> A
)
16 simpr 477 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  x  C_  B )
17 vex 3203 . . . . . . . . . . . 12  |-  x  e. 
_V
1817a1i 11 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  x  e.  _V )
19 f1imaeng 8016 . . . . . . . . . . 11  |-  ( ( f : B -1-1-> A  /\  x  C_  B  /\  x  e.  _V )  ->  ( f " x
)  ~~  x )
2015, 16, 18, 19syl3anc 1326 . . . . . . . . . 10  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " x
)  ~~  x )
21 enfi 8176 . . . . . . . . . 10  |-  ( ( f " x ) 
~~  x  ->  (
( f " x
)  e.  Fin  <->  x  e.  Fin ) )
2220, 21syl 17 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( f "
x )  e.  Fin  <->  x  e.  Fin ) )
23 df-f1 5893 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-> A  <->  ( f : B --> A  /\  Fun  `' f ) )
2423simprbi 480 . . . . . . . . . . . . 13  |-  ( f : B -1-1-> A  ->  Fun  `' f )
25 imadif 5973 . . . . . . . . . . . . 13  |-  ( Fun  `' f  ->  ( f
" ( B  \  x ) )  =  ( ( f " B )  \  (
f " x ) ) )
2615, 24, 253syl 18 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " ( B  \  x ) )  =  ( ( f
" B )  \ 
( f " x
) ) )
27 f1ofo 6144 . . . . . . . . . . . . . . 15  |-  ( f : B -1-1-onto-> A  ->  f : B -onto-> A )
28 foima 6120 . . . . . . . . . . . . . . 15  |-  ( f : B -onto-> A  -> 
( f " B
)  =  A )
2927, 28syl 17 . . . . . . . . . . . . . 14  |-  ( f : B -1-1-onto-> A  ->  ( f " B )  =  A )
3029ad2antrr 762 . . . . . . . . . . . . 13  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " B
)  =  A )
3130difeq1d 3727 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( f " B )  \  (
f " x ) )  =  ( A 
\  ( f "
x ) ) )
3226, 31eqtrd 2656 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " ( B  \  x ) )  =  ( A  \ 
( f " x
) ) )
33 difssd 3738 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( B  \  x
)  C_  B )
34 vex 3203 . . . . . . . . . . . . . . 15  |-  f  e. 
_V
357adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  f : B --> A )
36 dmfex 7124 . . . . . . . . . . . . . . 15  |-  ( ( f  e.  _V  /\  f : B --> A )  ->  B  e.  _V )
3734, 35, 36sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  B  e.  _V )
3837adantr 481 . . . . . . . . . . . . 13  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  ->  B  e.  _V )
39 difexg 4808 . . . . . . . . . . . . 13  |-  ( B  e.  _V  ->  ( B  \  x )  e. 
_V )
4038, 39syl 17 . . . . . . . . . . . 12  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( B  \  x
)  e.  _V )
41 f1imaeng 8016 . . . . . . . . . . . 12  |-  ( ( f : B -1-1-> A  /\  ( B  \  x
)  C_  B  /\  ( B  \  x
)  e.  _V )  ->  ( f " ( B  \  x ) ) 
~~  ( B  \  x ) )
4215, 33, 40, 41syl3anc 1326 . . . . . . . . . . 11  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( f " ( B  \  x ) ) 
~~  ( B  \  x ) )
4332, 42eqbrtrrd 4677 . . . . . . . . . 10  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( A  \  (
f " x ) )  ~~  ( B 
\  x ) )
44 enfi 8176 . . . . . . . . . 10  |-  ( ( A  \  ( f
" x ) ) 
~~  ( B  \  x )  ->  (
( A  \  (
f " x ) )  e.  Fin  <->  ( B  \  x )  e.  Fin ) )
4543, 44syl 17 . . . . . . . . 9  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( A  \ 
( f " x
) )  e.  Fin  <->  ( B  \  x )  e. 
Fin ) )
4622, 45orbi12d 746 . . . . . . . 8  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( ( ( f
" x )  e. 
Fin  \/  ( A  \  ( f " x
) )  e.  Fin ) 
<->  ( x  e.  Fin  \/  ( B  \  x
)  e.  Fin )
) )
4713, 46mpbid 222 . . . . . . 7  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  C_  B )  -> 
( x  e.  Fin  \/  ( B  \  x
)  e.  Fin )
)
484, 47sylan2 491 . . . . . 6  |-  ( ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  /\  x  e.  ~P B
)  ->  ( x  e.  Fin  \/  ( B 
\  x )  e. 
Fin ) )
4948ralrimiva 2966 . . . . 5  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  A. x  e.  ~P  B ( x  e.  Fin  \/  ( B  \  x )  e. 
Fin ) )
50 isfin1a 9114 . . . . . 6  |-  ( B  e.  _V  ->  ( B  e. FinIa 
<-> 
A. x  e.  ~P  B ( x  e. 
Fin  \/  ( B  \  x )  e.  Fin ) ) )
5137, 50syl 17 . . . . 5  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  ( B  e. FinIa 
<-> 
A. x  e.  ~P  B ( x  e. 
Fin  \/  ( B  \  x )  e.  Fin ) ) )
5249, 51mpbird 247 . . . 4  |-  ( ( f : B -1-1-onto-> A  /\  A  e. FinIa )  ->  B  e. FinIa
)
5352ex 450 . . 3  |-  ( f : B -1-1-onto-> A  ->  ( A  e. FinIa  ->  B  e. FinIa ) )
5453exlimiv 1858 . 2  |-  ( E. f  f : B -1-1-onto-> A  ->  ( A  e. FinIa  ->  B  e. FinIa
) )
553, 54syl 17 1  |-  ( A 
~~  B  ->  ( A  e. FinIa  ->  B  e. FinIa ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990   A.wral 2912   _Vcvv 3200    \ cdif 3571    C_ wss 3574   ~Pcpw 4158   class class class wbr 4653   `'ccnv 5113   ran crn 5115   "cima 5117   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   -onto->wfo 5886   -1-1-onto->wf1o 5887    ~~ cen 7952   Fincfn 7955  FinIacfin1a 9100
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-fin 7959  df-fin1a 9107
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator