MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isgrpd2e Structured version   Visualization version   Unicode version

Theorem isgrpd2e 17441
Description: Deduce a group from its properties. In this version of isgrpd2 17442, we don't assume there is an expression for the inverse of  x. (Contributed by NM, 10-Aug-2013.)
Hypotheses
Ref Expression
isgrpd2.b  |-  ( ph  ->  B  =  ( Base `  G ) )
isgrpd2.p  |-  ( ph  ->  .+  =  ( +g  `  G ) )
isgrpd2.z  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
isgrpd2.g  |-  ( ph  ->  G  e.  Mnd )
isgrpd2e.n  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
Assertion
Ref Expression
isgrpd2e  |-  ( ph  ->  G  e.  Grp )
Distinct variable groups:    x, y,  .+    y,  .0.    x, B, y   
x, G, y    ph, x, y
Allowed substitution hint:    .0. ( x)

Proof of Theorem isgrpd2e
StepHypRef Expression
1 isgrpd2.g . 2  |-  ( ph  ->  G  e.  Mnd )
2 isgrpd2e.n . . . 4  |-  ( (
ph  /\  x  e.  B )  ->  E. y  e.  B  ( y  .+  x )  =  .0.  )
32ralrimiva 2966 . . 3  |-  ( ph  ->  A. x  e.  B  E. y  e.  B  ( y  .+  x
)  =  .0.  )
4 isgrpd2.b . . . 4  |-  ( ph  ->  B  =  ( Base `  G ) )
5 isgrpd2.p . . . . . . 7  |-  ( ph  ->  .+  =  ( +g  `  G ) )
65oveqd 6667 . . . . . 6  |-  ( ph  ->  ( y  .+  x
)  =  ( y ( +g  `  G
) x ) )
7 isgrpd2.z . . . . . 6  |-  ( ph  ->  .0.  =  ( 0g
`  G ) )
86, 7eqeq12d 2637 . . . . 5  |-  ( ph  ->  ( ( y  .+  x )  =  .0.  <->  ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )
94, 8rexeqbidv 3153 . . . 4  |-  ( ph  ->  ( E. y  e.  B  ( y  .+  x )  =  .0.  <->  E. y  e.  ( Base `  G ) ( y ( +g  `  G
) x )  =  ( 0g `  G
) ) )
104, 9raleqbidv 3152 . . 3  |-  ( ph  ->  ( A. x  e.  B  E. y  e.  B  ( y  .+  x )  =  .0.  <->  A. x  e.  ( Base `  G ) E. y  e.  ( Base `  G
) ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
113, 10mpbid 222 . 2  |-  ( ph  ->  A. x  e.  (
Base `  G ) E. y  e.  ( Base `  G ) ( y ( +g  `  G
) x )  =  ( 0g `  G
) )
12 eqid 2622 . . 3  |-  ( Base `  G )  =  (
Base `  G )
13 eqid 2622 . . 3  |-  ( +g  `  G )  =  ( +g  `  G )
14 eqid 2622 . . 3  |-  ( 0g
`  G )  =  ( 0g `  G
)
1512, 13, 14isgrp 17428 . 2  |-  ( G  e.  Grp  <->  ( G  e.  Mnd  /\  A. x  e.  ( Base `  G
) E. y  e.  ( Base `  G
) ( y ( +g  `  G ) x )  =  ( 0g `  G ) ) )
161, 11, 15sylanbrc 698 1  |-  ( ph  ->  G  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   ` cfv 5888  (class class class)co 6650   Basecbs 15857   +g cplusg 15941   0gc0g 16100   Mndcmnd 17294   Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-grp 17425
This theorem is referenced by:  isgrpd2  17442  isgrpde  17443
  Copyright terms: Public domain W3C validator