MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  grpss Structured version   Visualization version   Unicode version

Theorem grpss 17440
Description: Show that a structure extending a constructed group (e.g., a ring) is also a group. This allows us to prove that a constructed potential ring  R is a group before we know that it is also a ring. (Theorem ringgrp 18552, on the other hand, requires that we know in advance that  R is a ring.) (Contributed by NM, 11-Oct-2013.)
Hypotheses
Ref Expression
grpss.g  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
grpss.r  |-  R  e. 
_V
grpss.s  |-  G  C_  R
grpss.f  |-  Fun  R
Assertion
Ref Expression
grpss  |-  ( G  e.  Grp  <->  R  e.  Grp )

Proof of Theorem grpss
StepHypRef Expression
1 grpss.r . . . 4  |-  R  e. 
_V
2 grpss.f . . . 4  |-  Fun  R
3 grpss.s . . . 4  |-  G  C_  R
4 baseid 15919 . . . 4  |-  Base  = Slot  ( Base `  ndx )
5 opex 4932 . . . . . 6  |-  <. ( Base `  ndx ) ,  B >.  e.  _V
65prid1 4297 . . . . 5  |-  <. ( Base `  ndx ) ,  B >.  e.  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. }
7 grpss.g . . . . 5  |-  G  =  { <. ( Base `  ndx ) ,  B >. , 
<. ( +g  `  ndx ) ,  .+  >. }
86, 7eleqtrri 2700 . . . 4  |-  <. ( Base `  ndx ) ,  B >.  e.  G
91, 2, 3, 4, 8strss 15910 . . 3  |-  ( Base `  R )  =  (
Base `  G )
10 plusgid 15977 . . . 4  |-  +g  = Slot  ( +g  `  ndx )
11 opex 4932 . . . . . 6  |-  <. ( +g  `  ndx ) , 
.+  >.  e.  _V
1211prid2 4298 . . . . 5  |-  <. ( +g  `  ndx ) , 
.+  >.  e.  { <. (
Base `  ndx ) ,  B >. ,  <. ( +g  `  ndx ) , 
.+  >. }
1312, 7eleqtrri 2700 . . . 4  |-  <. ( +g  `  ndx ) , 
.+  >.  e.  G
141, 2, 3, 10, 13strss 15910 . . 3  |-  ( +g  `  R )  =  ( +g  `  G )
159, 14grpprop 17438 . 2  |-  ( R  e.  Grp  <->  G  e.  Grp )
1615bicomi 214 1  |-  ( G  e.  Grp  <->  R  e.  Grp )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   {cpr 4179   <.cop 4183   Fun wfun 5882   ` cfv 5888   ndxcnx 15854   Basecbs 15857   +g cplusg 15941   Grpcgrp 17422
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-i2m1 10004  ax-1ne0 10005  ax-rrecex 10008  ax-cnre 10009
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-nn 11021  df-2 11079  df-ndx 15860  df-slot 15861  df-base 15863  df-plusg 15954  df-0g 16102  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-grp 17425
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator