| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ismfs | Structured version Visualization version Unicode version | ||
| Description: A formal system is a
tuple |
| Ref | Expression |
|---|---|
| ismfs.c |
|
| ismfs.v |
|
| ismfs.y |
|
| ismfs.f |
|
| ismfs.k |
|
| ismfs.a |
|
| ismfs.s |
|
| Ref | Expression |
|---|---|
| ismfs |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq2 6191 |
. . . . . . 7
| |
| 2 | ismfs.c |
. . . . . . 7
| |
| 3 | 1, 2 | syl6eqr 2674 |
. . . . . 6
|
| 4 | fveq2 6191 |
. . . . . . 7
| |
| 5 | ismfs.v |
. . . . . . 7
| |
| 6 | 4, 5 | syl6eqr 2674 |
. . . . . 6
|
| 7 | 3, 6 | ineq12d 3815 |
. . . . 5
|
| 8 | 7 | eqeq1d 2624 |
. . . 4
|
| 9 | fveq2 6191 |
. . . . . 6
| |
| 10 | ismfs.y |
. . . . . 6
| |
| 11 | 9, 10 | syl6eqr 2674 |
. . . . 5
|
| 12 | fveq2 6191 |
. . . . . 6
| |
| 13 | ismfs.k |
. . . . . 6
| |
| 14 | 12, 13 | syl6eqr 2674 |
. . . . 5
|
| 15 | 11, 6, 14 | feq123d 6034 |
. . . 4
|
| 16 | 8, 15 | anbi12d 747 |
. . 3
|
| 17 | fveq2 6191 |
. . . . . 6
| |
| 18 | ismfs.a |
. . . . . 6
| |
| 19 | 17, 18 | syl6eqr 2674 |
. . . . 5
|
| 20 | fveq2 6191 |
. . . . . 6
| |
| 21 | ismfs.s |
. . . . . 6
| |
| 22 | 20, 21 | syl6eqr 2674 |
. . . . 5
|
| 23 | 19, 22 | sseq12d 3634 |
. . . 4
|
| 24 | fveq2 6191 |
. . . . . 6
| |
| 25 | ismfs.f |
. . . . . 6
| |
| 26 | 24, 25 | syl6eqr 2674 |
. . . . 5
|
| 27 | 11 | cnveqd 5298 |
. . . . . . . 8
|
| 28 | 27 | imaeq1d 5465 |
. . . . . . 7
|
| 29 | 28 | eleq1d 2686 |
. . . . . 6
|
| 30 | 29 | notbid 308 |
. . . . 5
|
| 31 | 26, 30 | raleqbidv 3152 |
. . . 4
|
| 32 | 23, 31 | anbi12d 747 |
. . 3
|
| 33 | 16, 32 | anbi12d 747 |
. 2
|
| 34 | df-mfs 31393 |
. 2
| |
| 35 | 33, 34 | elab2g 3353 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fn 5891 df-f 5892 df-fv 5896 df-mfs 31393 |
| This theorem is referenced by: mfsdisj 31447 mtyf2 31448 maxsta 31451 mvtinf 31452 |
| Copyright terms: Public domain | W3C validator |