Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ismfs Structured version   Visualization version   Unicode version

Theorem ismfs 31446
Description: A formal system is a tuple  <.mCN , mVR , mType , mVT , mTC , mAx >. such that: mCN and mVR are disjoint; mType is a function from mVR to mVT; mVT is a subset of mTC; mAx is a set of statements; and for each variable typecode, there are infinitely many variables of that type. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
ismfs.c  |-  C  =  (mCN `  T )
ismfs.v  |-  V  =  (mVR `  T )
ismfs.y  |-  Y  =  (mType `  T )
ismfs.f  |-  F  =  (mVT `  T )
ismfs.k  |-  K  =  (mTC `  T )
ismfs.a  |-  A  =  (mAx `  T )
ismfs.s  |-  S  =  (mStat `  T )
Assertion
Ref Expression
ismfs  |-  ( T  e.  W  ->  ( T  e. mFS  <->  ( ( ( C  i^i  V )  =  (/)  /\  Y : V
--> K )  /\  ( A  C_  S  /\  A. v  e.  F  -.  ( `' Y " { v } )  e.  Fin ) ) ) )
Distinct variable groups:    v, F    v, T
Allowed substitution hints:    A( v)    C( v)    S( v)    K( v)    V( v)    W( v)    Y( v)

Proof of Theorem ismfs
Dummy variable  t is distinct from all other variables.
StepHypRef Expression
1 fveq2 6191 . . . . . . 7  |-  ( t  =  T  ->  (mCN `  t )  =  (mCN
`  T ) )
2 ismfs.c . . . . . . 7  |-  C  =  (mCN `  T )
31, 2syl6eqr 2674 . . . . . 6  |-  ( t  =  T  ->  (mCN `  t )  =  C )
4 fveq2 6191 . . . . . . 7  |-  ( t  =  T  ->  (mVR `  t )  =  (mVR
`  T ) )
5 ismfs.v . . . . . . 7  |-  V  =  (mVR `  T )
64, 5syl6eqr 2674 . . . . . 6  |-  ( t  =  T  ->  (mVR `  t )  =  V )
73, 6ineq12d 3815 . . . . 5  |-  ( t  =  T  ->  (
(mCN `  t )  i^i  (mVR `  t )
)  =  ( C  i^i  V ) )
87eqeq1d 2624 . . . 4  |-  ( t  =  T  ->  (
( (mCN `  t
)  i^i  (mVR `  t
) )  =  (/)  <->  ( C  i^i  V )  =  (/) ) )
9 fveq2 6191 . . . . . 6  |-  ( t  =  T  ->  (mType `  t )  =  (mType `  T ) )
10 ismfs.y . . . . . 6  |-  Y  =  (mType `  T )
119, 10syl6eqr 2674 . . . . 5  |-  ( t  =  T  ->  (mType `  t )  =  Y )
12 fveq2 6191 . . . . . 6  |-  ( t  =  T  ->  (mTC `  t )  =  (mTC
`  T ) )
13 ismfs.k . . . . . 6  |-  K  =  (mTC `  T )
1412, 13syl6eqr 2674 . . . . 5  |-  ( t  =  T  ->  (mTC `  t )  =  K )
1511, 6, 14feq123d 6034 . . . 4  |-  ( t  =  T  ->  (
(mType `  t ) : (mVR `  t ) --> (mTC `  t )  <->  Y : V
--> K ) )
168, 15anbi12d 747 . . 3  |-  ( t  =  T  ->  (
( ( (mCN `  t )  i^i  (mVR `  t ) )  =  (/)  /\  (mType `  t
) : (mVR `  t ) --> (mTC `  t ) )  <->  ( ( C  i^i  V )  =  (/)  /\  Y : V --> K ) ) )
17 fveq2 6191 . . . . . 6  |-  ( t  =  T  ->  (mAx `  t )  =  (mAx
`  T ) )
18 ismfs.a . . . . . 6  |-  A  =  (mAx `  T )
1917, 18syl6eqr 2674 . . . . 5  |-  ( t  =  T  ->  (mAx `  t )  =  A )
20 fveq2 6191 . . . . . 6  |-  ( t  =  T  ->  (mStat `  t )  =  (mStat `  T ) )
21 ismfs.s . . . . . 6  |-  S  =  (mStat `  T )
2220, 21syl6eqr 2674 . . . . 5  |-  ( t  =  T  ->  (mStat `  t )  =  S )
2319, 22sseq12d 3634 . . . 4  |-  ( t  =  T  ->  (
(mAx `  t )  C_  (mStat `  t )  <->  A 
C_  S ) )
24 fveq2 6191 . . . . . 6  |-  ( t  =  T  ->  (mVT `  t )  =  (mVT
`  T ) )
25 ismfs.f . . . . . 6  |-  F  =  (mVT `  T )
2624, 25syl6eqr 2674 . . . . 5  |-  ( t  =  T  ->  (mVT `  t )  =  F )
2711cnveqd 5298 . . . . . . . 8  |-  ( t  =  T  ->  `' (mType `  t )  =  `' Y )
2827imaeq1d 5465 . . . . . . 7  |-  ( t  =  T  ->  ( `' (mType `  t ) " { v } )  =  ( `' Y " { v } ) )
2928eleq1d 2686 . . . . . 6  |-  ( t  =  T  ->  (
( `' (mType `  t ) " {
v } )  e. 
Fin 
<->  ( `' Y " { v } )  e.  Fin ) )
3029notbid 308 . . . . 5  |-  ( t  =  T  ->  ( -.  ( `' (mType `  t ) " {
v } )  e. 
Fin 
<->  -.  ( `' Y " { v } )  e.  Fin ) )
3126, 30raleqbidv 3152 . . . 4  |-  ( t  =  T  ->  ( A. v  e.  (mVT `  t )  -.  ( `' (mType `  t ) " { v } )  e.  Fin  <->  A. v  e.  F  -.  ( `' Y " { v } )  e.  Fin ) )
3223, 31anbi12d 747 . . 3  |-  ( t  =  T  ->  (
( (mAx `  t
)  C_  (mStat `  t
)  /\  A. v  e.  (mVT `  t )  -.  ( `' (mType `  t ) " {
v } )  e. 
Fin )  <->  ( A  C_  S  /\  A. v  e.  F  -.  ( `' Y " { v } )  e.  Fin ) ) )
3316, 32anbi12d 747 . 2  |-  ( t  =  T  ->  (
( ( ( (mCN
`  t )  i^i  (mVR `  t )
)  =  (/)  /\  (mType `  t ) : (mVR
`  t ) --> (mTC
`  t ) )  /\  ( (mAx `  t )  C_  (mStat `  t )  /\  A. v  e.  (mVT `  t
)  -.  ( `' (mType `  t ) " { v } )  e.  Fin ) )  <-> 
( ( ( C  i^i  V )  =  (/)  /\  Y : V --> K )  /\  ( A  C_  S  /\  A. v  e.  F  -.  ( `' Y " { v } )  e.  Fin ) ) ) )
34 df-mfs 31393 . 2  |- mFS  =  {
t  |  ( ( ( (mCN `  t
)  i^i  (mVR `  t
) )  =  (/)  /\  (mType `  t ) : (mVR `  t ) --> (mTC `  t ) )  /\  ( (mAx `  t )  C_  (mStat `  t )  /\  A. v  e.  (mVT `  t
)  -.  ( `' (mType `  t ) " { v } )  e.  Fin ) ) }
3533, 34elab2g 3353 1  |-  ( T  e.  W  ->  ( T  e. mFS  <->  ( ( ( C  i^i  V )  =  (/)  /\  Y : V
--> K )  /\  ( A  C_  S  /\  A. v  e.  F  -.  ( `' Y " { v } )  e.  Fin ) ) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   `'ccnv 5113   "cima 5117   -->wf 5884   ` cfv 5888   Fincfn 7955  mCNcmcn 31357  mVRcmvar 31358  mTypecmty 31359  mVTcmvt 31360  mTCcmtc 31361  mAxcmax 31362  mStatcmsta 31372  mFScmfs 31373
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-mfs 31393
This theorem is referenced by:  mfsdisj  31447  mtyf2  31448  maxsta  31451  mvtinf  31452
  Copyright terms: Public domain W3C validator