Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmsta Structured version   Visualization version   Unicode version

Theorem elmsta 31445
Description: Property of being a statement. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
mstapst.p  |-  P  =  (mPreSt `  T )
mstapst.s  |-  S  =  (mStat `  T )
elmsta.v  |-  V  =  (mVars `  T )
elmsta.z  |-  Z  = 
U. ( V "
( H  u.  { A } ) )
Assertion
Ref Expression
elmsta  |-  ( <. D ,  H ,  A >.  e.  S  <->  ( <. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z
) ) )

Proof of Theorem elmsta
StepHypRef Expression
1 mstapst.p . . . . 5  |-  P  =  (mPreSt `  T )
2 mstapst.s . . . . 5  |-  S  =  (mStat `  T )
31, 2mstapst 31444 . . . 4  |-  S  C_  P
43sseli 3599 . . 3  |-  ( <. D ,  H ,  A >.  e.  S  ->  <. D ,  H ,  A >.  e.  P )
5 elmsta.v . . . . . . . . . 10  |-  V  =  (mVars `  T )
6 eqid 2622 . . . . . . . . . 10  |-  (mStRed `  T )  =  (mStRed `  T )
7 elmsta.z . . . . . . . . . 10  |-  Z  = 
U. ( V "
( H  u.  { A } ) )
85, 1, 6, 7msrval 31435 . . . . . . . . 9  |-  ( <. D ,  H ,  A >.  e.  P  -> 
( (mStRed `  T
) `  <. D ,  H ,  A >. )  =  <. ( D  i^i  ( Z  X.  Z
) ) ,  H ,  A >. )
94, 8syl 17 . . . . . . . 8  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( (mStRed `  T
) `  <. D ,  H ,  A >. )  =  <. ( D  i^i  ( Z  X.  Z
) ) ,  H ,  A >. )
106, 2msrid 31442 . . . . . . . 8  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( (mStRed `  T
) `  <. D ,  H ,  A >. )  =  <. D ,  H ,  A >. )
119, 10eqtr3d 2658 . . . . . . 7  |-  ( <. D ,  H ,  A >.  e.  S  ->  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >.  =  <. D ,  H ,  A >. )
1211fveq2d 6195 . . . . . 6  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( 1st `  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >. )  =  ( 1st `  <. D ,  H ,  A >. ) )
1312fveq2d 6195 . . . . 5  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( 1st `  ( 1st `  <. ( D  i^i  ( Z  X.  Z
) ) ,  H ,  A >. ) )  =  ( 1st `  ( 1st `  <. D ,  H ,  A >. ) ) )
14 inss1 3833 . . . . . . 7  |-  ( D  i^i  ( Z  X.  Z ) )  C_  D
151mpstrcl 31438 . . . . . . . . 9  |-  ( <. D ,  H ,  A >.  e.  P  -> 
( D  e.  _V  /\  H  e.  _V  /\  A  e.  _V )
)
164, 15syl 17 . . . . . . . 8  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( D  e.  _V  /\  H  e.  _V  /\  A  e.  _V )
)
1716simp1d 1073 . . . . . . 7  |-  ( <. D ,  H ,  A >.  e.  S  ->  D  e.  _V )
18 ssexg 4804 . . . . . . 7  |-  ( ( ( D  i^i  ( Z  X.  Z ) ) 
C_  D  /\  D  e.  _V )  ->  ( D  i^i  ( Z  X.  Z ) )  e. 
_V )
1914, 17, 18sylancr 695 . . . . . 6  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( D  i^i  ( Z  X.  Z ) )  e.  _V )
2016simp2d 1074 . . . . . 6  |-  ( <. D ,  H ,  A >.  e.  S  ->  H  e.  _V )
2116simp3d 1075 . . . . . 6  |-  ( <. D ,  H ,  A >.  e.  S  ->  A  e.  _V )
22 ot1stg 7182 . . . . . 6  |-  ( ( ( D  i^i  ( Z  X.  Z ) )  e.  _V  /\  H  e.  _V  /\  A  e. 
_V )  ->  ( 1st `  ( 1st `  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >. ) )  =  ( D  i^i  ( Z  X.  Z ) ) )
2319, 20, 21, 22syl3anc 1326 . . . . 5  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( 1st `  ( 1st `  <. ( D  i^i  ( Z  X.  Z
) ) ,  H ,  A >. ) )  =  ( D  i^i  ( Z  X.  Z ) ) )
24 ot1stg 7182 . . . . . 6  |-  ( ( D  e.  _V  /\  H  e.  _V  /\  A  e.  _V )  ->  ( 1st `  ( 1st `  <. D ,  H ,  A >. ) )  =  D )
2516, 24syl 17 . . . . 5  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( 1st `  ( 1st `  <. D ,  H ,  A >. ) )  =  D )
2613, 23, 253eqtr3d 2664 . . . 4  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( D  i^i  ( Z  X.  Z ) )  =  D )
27 inss2 3834 . . . 4  |-  ( D  i^i  ( Z  X.  Z ) )  C_  ( Z  X.  Z
)
2826, 27syl6eqssr 3656 . . 3  |-  ( <. D ,  H ,  A >.  e.  S  ->  D  C_  ( Z  X.  Z ) )
294, 28jca 554 . 2  |-  ( <. D ,  H ,  A >.  e.  S  -> 
( <. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) ) )
308adantr 481 . . . . 5  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) )  -> 
( (mStRed `  T
) `  <. D ,  H ,  A >. )  =  <. ( D  i^i  ( Z  X.  Z
) ) ,  H ,  A >. )
31 simpr 477 . . . . . . 7  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) )  ->  D  C_  ( Z  X.  Z ) )
32 df-ss 3588 . . . . . . 7  |-  ( D 
C_  ( Z  X.  Z )  <->  ( D  i^i  ( Z  X.  Z
) )  =  D )
3331, 32sylib 208 . . . . . 6  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) )  -> 
( D  i^i  ( Z  X.  Z ) )  =  D )
3433oteq1d 4414 . . . . 5  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) )  ->  <. ( D  i^i  ( Z  X.  Z ) ) ,  H ,  A >.  =  <. D ,  H ,  A >. )
3530, 34eqtrd 2656 . . . 4  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) )  -> 
( (mStRed `  T
) `  <. D ,  H ,  A >. )  =  <. D ,  H ,  A >. )
361, 6msrf 31439 . . . . . 6  |-  (mStRed `  T ) : P --> P
37 ffn 6045 . . . . . 6  |-  ( (mStRed `  T ) : P --> P  ->  (mStRed `  T )  Fn  P )
3836, 37ax-mp 5 . . . . 5  |-  (mStRed `  T )  Fn  P
39 simpl 473 . . . . 5  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) )  ->  <. D ,  H ,  A >.  e.  P )
40 fnfvelrn 6356 . . . . 5  |-  ( ( (mStRed `  T )  Fn  P  /\  <. D ,  H ,  A >.  e.  P )  ->  (
(mStRed `  T ) `  <. D ,  H ,  A >. )  e.  ran  (mStRed `  T ) )
4138, 39, 40sylancr 695 . . . 4  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) )  -> 
( (mStRed `  T
) `  <. D ,  H ,  A >. )  e.  ran  (mStRed `  T ) )
4235, 41eqeltrrd 2702 . . 3  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) )  ->  <. D ,  H ,  A >.  e.  ran  (mStRed `  T ) )
436, 2mstaval 31441 . . 3  |-  S  =  ran  (mStRed `  T
)
4442, 43syl6eleqr 2712 . 2  |-  ( (
<. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z ) )  ->  <. D ,  H ,  A >.  e.  S )
4529, 44impbii 199 1  |-  ( <. D ,  H ,  A >.  e.  S  <->  ( <. D ,  H ,  A >.  e.  P  /\  D  C_  ( Z  X.  Z
) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   {csn 4177   <.cotp 4185   U.cuni 4436    X. cxp 5112   ran crn 5115   "cima 5117    Fn wfn 5883   -->wf 5884   ` cfv 5888   1stc1st 7166  mVarscmvrs 31366  mPreStcmpst 31370  mStRedcmsr 31371  mStatcmsta 31372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-ot 4186  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-1st 7168  df-2nd 7169  df-mpst 31390  df-msr 31391  df-msta 31392
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator