MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isptfin Structured version   Visualization version   Unicode version

Theorem isptfin 21319
Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypothesis
Ref Expression
isptfin.1  |-  X  = 
U. A
Assertion
Ref Expression
isptfin  |-  ( A  e.  B  ->  ( A  e.  PtFin  <->  A. x  e.  X  { y  e.  A  |  x  e.  y }  e.  Fin ) )
Distinct variable groups:    x, y, A    x, X
Allowed substitution hints:    B( x, y)    X( y)

Proof of Theorem isptfin
Dummy variable  a is distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . 4  |-  ( a  =  A  ->  U. a  =  U. A )
2 isptfin.1 . . . 4  |-  X  = 
U. A
31, 2syl6eqr 2674 . . 3  |-  ( a  =  A  ->  U. a  =  X )
4 rabeq 3192 . . . 4  |-  ( a  =  A  ->  { y  e.  a  |  x  e.  y }  =  { y  e.  A  |  x  e.  y } )
54eleq1d 2686 . . 3  |-  ( a  =  A  ->  ( { y  e.  a  |  x  e.  y }  e.  Fin  <->  { y  e.  A  |  x  e.  y }  e.  Fin ) )
63, 5raleqbidv 3152 . 2  |-  ( a  =  A  ->  ( A. x  e.  U. a { y  e.  a  |  x  e.  y }  e.  Fin  <->  A. x  e.  X  { y  e.  A  |  x  e.  y }  e.  Fin ) )
7 df-ptfin 21309 . 2  |-  PtFin  =  {
a  |  A. x  e.  U. a { y  e.  a  |  x  e.  y }  e.  Fin }
86, 7elab2g 3353 1  |-  ( A  e.  B  ->  ( A  e.  PtFin  <->  A. x  e.  X  { y  e.  A  |  x  e.  y }  e.  Fin ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    = wceq 1483    e. wcel 1990   A.wral 2912   {crab 2916   U.cuni 4436   Fincfn 7955   PtFincptfin 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-uni 4437  df-ptfin 21309
This theorem is referenced by:  finptfin  21321  ptfinfin  21322  lfinpfin  21327
  Copyright terms: Public domain W3C validator