MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  isptfin Structured version   Visualization version   GIF version

Theorem isptfin 21319
Description: The statement "is a point-finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypothesis
Ref Expression
isptfin.1 𝑋 = 𝐴
Assertion
Ref Expression
isptfin (𝐴𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥𝑋 {𝑦𝐴𝑥𝑦} ∈ Fin))
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝑋
Allowed substitution hints:   𝐵(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem isptfin
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 unieq 4444 . . . 4 (𝑎 = 𝐴 𝑎 = 𝐴)
2 isptfin.1 . . . 4 𝑋 = 𝐴
31, 2syl6eqr 2674 . . 3 (𝑎 = 𝐴 𝑎 = 𝑋)
4 rabeq 3192 . . . 4 (𝑎 = 𝐴 → {𝑦𝑎𝑥𝑦} = {𝑦𝐴𝑥𝑦})
54eleq1d 2686 . . 3 (𝑎 = 𝐴 → ({𝑦𝑎𝑥𝑦} ∈ Fin ↔ {𝑦𝐴𝑥𝑦} ∈ Fin))
63, 5raleqbidv 3152 . 2 (𝑎 = 𝐴 → (∀𝑥 𝑎{𝑦𝑎𝑥𝑦} ∈ Fin ↔ ∀𝑥𝑋 {𝑦𝐴𝑥𝑦} ∈ Fin))
7 df-ptfin 21309 . 2 PtFin = {𝑎 ∣ ∀𝑥 𝑎{𝑦𝑎𝑥𝑦} ∈ Fin}
86, 7elab2g 3353 1 (𝐴𝐵 → (𝐴 ∈ PtFin ↔ ∀𝑥𝑋 {𝑦𝐴𝑥𝑦} ∈ Fin))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1483  wcel 1990  wral 2912  {crab 2916   cuni 4436  Fincfn 7955  PtFincptfin 21306
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-uni 4437  df-ptfin 21309
This theorem is referenced by:  finptfin  21321  ptfinfin  21322  lfinpfin  21327
  Copyright terms: Public domain W3C validator