| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > islocfin | Structured version Visualization version Unicode version | ||
| Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.) |
| Ref | Expression |
|---|---|
| islocfin.1 |
|
| islocfin.2 |
|
| Ref | Expression |
|---|---|
| islocfin |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-locfin 21310 |
. . . . 5
| |
| 2 | 1 | dmmptss 5631 |
. . . 4
|
| 3 | elfvdm 6220 |
. . . 4
| |
| 4 | 2, 3 | sseldi 3601 |
. . 3
|
| 5 | eqimss2 3658 |
. . . . . . . . . . 11
| |
| 6 | sspwuni 4611 |
. . . . . . . . . . 11
| |
| 7 | 5, 6 | sylibr 224 |
. . . . . . . . . 10
|
| 8 | selpw 4165 |
. . . . . . . . . 10
| |
| 9 | 7, 8 | sylibr 224 |
. . . . . . . . 9
|
| 10 | 9 | adantr 481 |
. . . . . . . 8
|
| 11 | 10 | abssi 3677 |
. . . . . . 7
|
| 12 | islocfin.1 |
. . . . . . . . 9
| |
| 13 | 12 | topopn 20711 |
. . . . . . . 8
|
| 14 | pwexg 4850 |
. . . . . . . 8
| |
| 15 | pwexg 4850 |
. . . . . . . 8
| |
| 16 | 13, 14, 15 | 3syl 18 |
. . . . . . 7
|
| 17 | ssexg 4804 |
. . . . . . 7
| |
| 18 | 11, 16, 17 | sylancr 695 |
. . . . . 6
|
| 19 | unieq 4444 |
. . . . . . . . . . 11
| |
| 20 | 19, 12 | syl6eqr 2674 |
. . . . . . . . . 10
|
| 21 | 20 | eqeq1d 2624 |
. . . . . . . . 9
|
| 22 | rexeq 3139 |
. . . . . . . . . 10
| |
| 23 | 20, 22 | raleqbidv 3152 |
. . . . . . . . 9
|
| 24 | 21, 23 | anbi12d 747 |
. . . . . . . 8
|
| 25 | 24 | abbidv 2741 |
. . . . . . 7
|
| 26 | 25, 1 | fvmptg 6280 |
. . . . . 6
|
| 27 | 18, 26 | mpdan 702 |
. . . . 5
|
| 28 | 27 | eleq2d 2687 |
. . . 4
|
| 29 | elex 3212 |
. . . . . 6
| |
| 30 | 29 | adantl 482 |
. . . . 5
|
| 31 | simpr 477 |
. . . . . . . . . 10
| |
| 32 | islocfin.2 |
. . . . . . . . . 10
| |
| 33 | 31, 32 | syl6eq 2672 |
. . . . . . . . 9
|
| 34 | 13 | adantr 481 |
. . . . . . . . 9
|
| 35 | 33, 34 | eqeltrrd 2702 |
. . . . . . . 8
|
| 36 | elex 3212 |
. . . . . . . 8
| |
| 37 | 35, 36 | syl 17 |
. . . . . . 7
|
| 38 | uniexb 6973 |
. . . . . . 7
| |
| 39 | 37, 38 | sylibr 224 |
. . . . . 6
|
| 40 | 39 | adantrr 753 |
. . . . 5
|
| 41 | unieq 4444 |
. . . . . . . . 9
| |
| 42 | 41, 32 | syl6eqr 2674 |
. . . . . . . 8
|
| 43 | 42 | eqeq2d 2632 |
. . . . . . 7
|
| 44 | rabeq 3192 |
. . . . . . . . . . 11
| |
| 45 | 44 | eleq1d 2686 |
. . . . . . . . . 10
|
| 46 | 45 | anbi2d 740 |
. . . . . . . . 9
|
| 47 | 46 | rexbidv 3052 |
. . . . . . . 8
|
| 48 | 47 | ralbidv 2986 |
. . . . . . 7
|
| 49 | 43, 48 | anbi12d 747 |
. . . . . 6
|
| 50 | 49 | elabg 3351 |
. . . . 5
|
| 51 | 30, 40, 50 | pm5.21nd 941 |
. . . 4
|
| 52 | 28, 51 | bitrd 268 |
. . 3
|
| 53 | 4, 52 | biadan2 674 |
. 2
|
| 54 | 3anass 1042 |
. 2
| |
| 55 | 53, 54 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-mpt 4730 df-id 5024 df-xp 5120 df-rel 5121 df-cnv 5122 df-co 5123 df-dm 5124 df-rn 5125 df-res 5126 df-ima 5127 df-iota 5851 df-fun 5890 df-fv 5896 df-top 20699 df-locfin 21310 |
| This theorem is referenced by: finlocfin 21323 locfintop 21324 locfinbas 21325 locfinnei 21326 lfinun 21328 dissnlocfin 21332 locfindis 21333 locfincf 21334 locfinreflem 29907 locfinref 29908 |
| Copyright terms: Public domain | W3C validator |