MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  islocfin Structured version   Visualization version   Unicode version

Theorem islocfin 21320
Description: The statement "is a locally finite cover." (Contributed by Jeff Hankins, 21-Jan-2010.)
Hypotheses
Ref Expression
islocfin.1  |-  X  = 
U. J
islocfin.2  |-  Y  = 
U. A
Assertion
Ref Expression
islocfin  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
Distinct variable groups:    n, s, x, A    n, J, x   
x, X
Allowed substitution hints:    J( s)    X( n, s)    Y( x, n, s)

Proof of Theorem islocfin
Dummy variables  j 
y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-locfin 21310 . . . . 5  |-  LocFin  =  ( j  e.  Top  |->  { y  |  ( U. j  =  U. y  /\  A. x  e.  U. j E. n  e.  j  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
21dmmptss 5631 . . . 4  |-  dom  LocFin  C_  Top
3 elfvdm 6220 . . . 4  |-  ( A  e.  ( LocFin `  J
)  ->  J  e.  dom  LocFin )
42, 3sseldi 3601 . . 3  |-  ( A  e.  ( LocFin `  J
)  ->  J  e.  Top )
5 eqimss2 3658 . . . . . . . . . . 11  |-  ( X  =  U. y  ->  U. y  C_  X )
6 sspwuni 4611 . . . . . . . . . . 11  |-  ( y 
C_  ~P X  <->  U. y  C_  X )
75, 6sylibr 224 . . . . . . . . . 10  |-  ( X  =  U. y  -> 
y  C_  ~P X
)
8 selpw 4165 . . . . . . . . . 10  |-  ( y  e.  ~P ~P X  <->  y 
C_  ~P X )
97, 8sylibr 224 . . . . . . . . 9  |-  ( X  =  U. y  -> 
y  e.  ~P ~P X )
109adantr 481 . . . . . . . 8  |-  ( ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  ->  y  e.  ~P ~P X )
1110abssi 3677 . . . . . . 7  |-  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  C_  ~P ~P X
12 islocfin.1 . . . . . . . . 9  |-  X  = 
U. J
1312topopn 20711 . . . . . . . 8  |-  ( J  e.  Top  ->  X  e.  J )
14 pwexg 4850 . . . . . . . 8  |-  ( X  e.  J  ->  ~P X  e.  _V )
15 pwexg 4850 . . . . . . . 8  |-  ( ~P X  e.  _V  ->  ~P ~P X  e.  _V )
1613, 14, 153syl 18 . . . . . . 7  |-  ( J  e.  Top  ->  ~P ~P X  e.  _V )
17 ssexg 4804 . . . . . . 7  |-  ( ( { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  C_  ~P ~P X  /\  ~P ~P X  e.  _V )  ->  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  e.  _V )
1811, 16, 17sylancr 695 . . . . . 6  |-  ( J  e.  Top  ->  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  e.  _V )
19 unieq 4444 . . . . . . . . . . 11  |-  ( j  =  J  ->  U. j  =  U. J )
2019, 12syl6eqr 2674 . . . . . . . . . 10  |-  ( j  =  J  ->  U. j  =  X )
2120eqeq1d 2624 . . . . . . . . 9  |-  ( j  =  J  ->  ( U. j  =  U. y 
<->  X  =  U. y
) )
22 rexeq 3139 . . . . . . . . . 10  |-  ( j  =  J  ->  ( E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
2320, 22raleqbidv 3152 . . . . . . . . 9  |-  ( j  =  J  ->  ( A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
2421, 23anbi12d 747 . . . . . . . 8  |-  ( j  =  J  ->  (
( U. j  = 
U. y  /\  A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  <->  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) ) )
2524abbidv 2741 . . . . . . 7  |-  ( j  =  J  ->  { y  |  ( U. j  =  U. y  /\  A. x  e.  U. j E. n  e.  j 
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  =  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
2625, 1fvmptg 6280 . . . . . 6  |-  ( ( J  e.  Top  /\  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  e.  _V )  ->  ( LocFin `  J )  =  {
y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } )
2718, 26mpdan 702 . . . . 5  |-  ( J  e.  Top  ->  ( LocFin `
 J )  =  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) } )
2827eleq2d 2687 . . . 4  |-  ( J  e.  Top  ->  ( A  e.  ( LocFin `  J )  <->  A  e.  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } ) )
29 elex 3212 . . . . . 6  |-  ( A  e.  { y  |  ( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) }  ->  A  e.  _V )
3029adantl 482 . . . . 5  |-  ( ( J  e.  Top  /\  A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) } )  ->  A  e.  _V )
31 simpr 477 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  =  Y )
32 islocfin.2 . . . . . . . . . 10  |-  Y  = 
U. A
3331, 32syl6eq 2672 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  =  U. A
)
3413adantr 481 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  X  e.  J )
3533, 34eqeltrrd 2702 . . . . . . . 8  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  U. A  e.  J
)
36 elex 3212 . . . . . . . 8  |-  ( U. A  e.  J  ->  U. A  e.  _V )
3735, 36syl 17 . . . . . . 7  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  U. A  e.  _V )
38 uniexb 6973 . . . . . . 7  |-  ( A  e.  _V  <->  U. A  e. 
_V )
3937, 38sylibr 224 . . . . . 6  |-  ( ( J  e.  Top  /\  X  =  Y )  ->  A  e.  _V )
4039adantrr 753 . . . . 5  |-  ( ( J  e.  Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )  ->  A  e.  _V )
41 unieq 4444 . . . . . . . . 9  |-  ( y  =  A  ->  U. y  =  U. A )
4241, 32syl6eqr 2674 . . . . . . . 8  |-  ( y  =  A  ->  U. y  =  Y )
4342eqeq2d 2632 . . . . . . 7  |-  ( y  =  A  ->  ( X  =  U. y  <->  X  =  Y ) )
44 rabeq 3192 . . . . . . . . . . 11  |-  ( y  =  A  ->  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  =  {
s  e.  A  | 
( s  i^i  n
)  =/=  (/) } )
4544eleq1d 2686 . . . . . . . . . 10  |-  ( y  =  A  ->  ( { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin 
<->  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )
4645anbi2d 740 . . . . . . . . 9  |-  ( y  =  A  ->  (
( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4746rexbidv 3052 . . . . . . . 8  |-  ( y  =  A  ->  ( E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4847ralbidv 2986 . . . . . . 7  |-  ( y  =  A  ->  ( A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin )  <->  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
4943, 48anbi12d 747 . . . . . 6  |-  ( y  =  A  ->  (
( X  =  U. y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  y  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) )  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5049elabg 3351 . . . . 5  |-  ( A  e.  _V  ->  ( A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5130, 40, 50pm5.21nd 941 . . . 4  |-  ( J  e.  Top  ->  ( A  e.  { y  |  ( X  = 
U. y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  y  |  ( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) }  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
5228, 51bitrd 268 . . 3  |-  ( J  e.  Top  ->  ( A  e.  ( LocFin `  J )  <->  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
534, 52biadan2 674 . 2  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) ) )
54 3anass 1042 . 2  |-  ( ( J  e.  Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin ) )  <->  ( J  e.  Top  /\  ( X  =  Y  /\  A. x  e.  X  E. n  e.  J  (
x  e.  n  /\  { s  e.  A  | 
( s  i^i  n
)  =/=  (/) }  e.  Fin ) ) ) )
5553, 54bitr4i 267 1  |-  ( A  e.  ( LocFin `  J
)  <->  ( J  e. 
Top  /\  X  =  Y  /\  A. x  e.  X  E. n  e.  J  ( x  e.  n  /\  { s  e.  A  |  ( s  i^i  n )  =/=  (/) }  e.  Fin ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   E.wrex 2913   {crab 2916   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   dom cdm 5114   ` cfv 5888   Fincfn 7955   Topctop 20698   LocFinclocfin 21307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-top 20699  df-locfin 21310
This theorem is referenced by:  finlocfin  21323  locfintop  21324  locfinbas  21325  locfinnei  21326  lfinun  21328  dissnlocfin  21332  locfindis  21333  locfincf  21334  locfinreflem  29907  locfinref  29908
  Copyright terms: Public domain W3C validator