| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > refun0 | Structured version Visualization version Unicode version | ||
| Description: Adding the empty set preserves refinements. (Contributed by Thierry Arnoux, 31-Jan-2020.) |
| Ref | Expression |
|---|---|
| refun0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2622 |
. . . 4
| |
| 2 | eqid 2622 |
. . . 4
| |
| 3 | 1, 2 | refbas 21313 |
. . 3
|
| 4 | 3 | adantr 481 |
. 2
|
| 5 | elun 3753 |
. . . 4
| |
| 6 | refssex 21314 |
. . . . . 6
| |
| 7 | 6 | adantlr 751 |
. . . . 5
|
| 8 | 0ss 3972 |
. . . . . . . . 9
| |
| 9 | 8 | a1i 11 |
. . . . . . . 8
|
| 10 | 9 | reximdva0 3933 |
. . . . . . 7
|
| 11 | 10 | adantr 481 |
. . . . . 6
|
| 12 | elsni 4194 |
. . . . . . . 8
| |
| 13 | sseq1 3626 |
. . . . . . . . 9
| |
| 14 | 13 | rexbidv 3052 |
. . . . . . . 8
|
| 15 | 12, 14 | syl 17 |
. . . . . . 7
|
| 16 | 15 | adantl 482 |
. . . . . 6
|
| 17 | 11, 16 | mpbird 247 |
. . . . 5
|
| 18 | 7, 17 | jaodan 826 |
. . . 4
|
| 19 | 5, 18 | sylan2b 492 |
. . 3
|
| 20 | 19 | ralrimiva 2966 |
. 2
|
| 21 | refrel 21311 |
. . . . . 6
| |
| 22 | 21 | brrelexi 5158 |
. . . . 5
|
| 23 | p0ex 4853 |
. . . . 5
| |
| 24 | unexg 6959 |
. . . . 5
| |
| 25 | 22, 23, 24 | sylancl 694 |
. . . 4
|
| 26 | uniun 4456 |
. . . . . 6
| |
| 27 | 0ex 4790 |
. . . . . . . 8
| |
| 28 | 27 | unisn 4451 |
. . . . . . 7
|
| 29 | 28 | uneq2i 3764 |
. . . . . 6
|
| 30 | un0 3967 |
. . . . . 6
| |
| 31 | 26, 29, 30 | 3eqtrri 2649 |
. . . . 5
|
| 32 | 31, 2 | isref 21312 |
. . . 4
|
| 33 | 25, 32 | syl 17 |
. . 3
|
| 34 | 33 | adantr 481 |
. 2
|
| 35 | 4, 20, 34 | mpbir2and 957 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pow 4843 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-pw 4160 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-ref 21308 |
| This theorem is referenced by: locfinref 29908 |
| Copyright terms: Public domain | W3C validator |