| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > issros | Structured version Visualization version Unicode version | ||
| Description: The property of being a semi-rings of sets, i.e. collections of sets containing the empty set, closed under finite intersection, and where complements can be written as finite disjoint unions. (Contributed by Thierry Arnoux, 18-Jul-2020.) |
| Ref | Expression |
|---|---|
| issros.1 |
|
| Ref | Expression |
|---|---|
| issros |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2690 |
. . . 4
| |
| 2 | eleq2 2690 |
. . . . . . 7
| |
| 3 | pweq 4161 |
. . . . . . . 8
| |
| 4 | 3 | rexeqdv 3145 |
. . . . . . 7
|
| 5 | 2, 4 | anbi12d 747 |
. . . . . 6
|
| 6 | 5 | raleqbi1dv 3146 |
. . . . 5
|
| 7 | 6 | raleqbi1dv 3146 |
. . . 4
|
| 8 | 1, 7 | anbi12d 747 |
. . 3
|
| 9 | issros.1 |
. . 3
| |
| 10 | 8, 9 | elrab2 3366 |
. 2
|
| 11 | 3anass 1042 |
. 2
| |
| 12 | 10, 11 | bitr4i 267 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
| This theorem is referenced by: srossspw 30239 0elsros 30240 inelsros 30241 diffiunisros 30242 rossros 30243 |
| Copyright terms: Public domain | W3C validator |