Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  issros Structured version   Visualization version   Unicode version

Theorem issros 30238
Description: The property of being a semi-rings of sets, i.e. collections of sets containing the empty set, closed under finite intersection, and where complements can be written as finite disjoint unions. (Contributed by Thierry Arnoux, 18-Jul-2020.)
Hypothesis
Ref Expression
issros.1  |-  N  =  { s  e.  ~P ~P O  |  ( (/) 
e.  s  /\  A. x  e.  s  A. y  e.  s  (
( x  i^i  y
)  e.  s  /\  E. z  e.  ~P  s
( z  e.  Fin  /\ Disj  t  e.  z  t  /\  ( x  \  y
)  =  U. z
) ) ) }
Assertion
Ref Expression
issros  |-  ( S  e.  N  <->  ( S  e.  ~P ~P O  /\  (/) 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
( x  i^i  y
)  e.  S  /\  E. z  e.  ~P  S
( z  e.  Fin  /\ Disj  t  e.  z  t  /\  ( x  \  y
)  =  U. z
) ) ) )
Distinct variable groups:    t, s, x, y    O, s    S, s, x, y, z
Allowed substitution hints:    S( t)    N( x, y, z, t, s)    O( x, y, z, t)

Proof of Theorem issros
StepHypRef Expression
1 eleq2 2690 . . . 4  |-  ( s  =  S  ->  ( (/) 
e.  s  <->  (/)  e.  S
) )
2 eleq2 2690 . . . . . . 7  |-  ( s  =  S  ->  (
( x  i^i  y
)  e.  s  <->  ( x  i^i  y )  e.  S
) )
3 pweq 4161 . . . . . . . 8  |-  ( s  =  S  ->  ~P s  =  ~P S
)
43rexeqdv 3145 . . . . . . 7  |-  ( s  =  S  ->  ( E. z  e.  ~P  s ( z  e. 
Fin  /\ Disj  t  e.  z  t  /\  ( x 
\  y )  = 
U. z )  <->  E. z  e.  ~P  S ( z  e.  Fin  /\ Disj  t  e.  z  t  /\  (
x  \  y )  =  U. z ) ) )
52, 4anbi12d 747 . . . . . 6  |-  ( s  =  S  ->  (
( ( x  i^i  y )  e.  s  /\  E. z  e. 
~P  s ( z  e.  Fin  /\ Disj  t  e.  z  t  /\  (
x  \  y )  =  U. z ) )  <-> 
( ( x  i^i  y )  e.  S  /\  E. z  e.  ~P  S ( z  e. 
Fin  /\ Disj  t  e.  z  t  /\  ( x 
\  y )  = 
U. z ) ) ) )
65raleqbi1dv 3146 . . . . 5  |-  ( s  =  S  ->  ( A. y  e.  s 
( ( x  i^i  y )  e.  s  /\  E. z  e. 
~P  s ( z  e.  Fin  /\ Disj  t  e.  z  t  /\  (
x  \  y )  =  U. z ) )  <->  A. y  e.  S  ( ( x  i^i  y )  e.  S  /\  E. z  e.  ~P  S ( z  e. 
Fin  /\ Disj  t  e.  z  t  /\  ( x 
\  y )  = 
U. z ) ) ) )
76raleqbi1dv 3146 . . . 4  |-  ( s  =  S  ->  ( A. x  e.  s  A. y  e.  s 
( ( x  i^i  y )  e.  s  /\  E. z  e. 
~P  s ( z  e.  Fin  /\ Disj  t  e.  z  t  /\  (
x  \  y )  =  U. z ) )  <->  A. x  e.  S  A. y  e.  S  ( ( x  i^i  y )  e.  S  /\  E. z  e.  ~P  S ( z  e. 
Fin  /\ Disj  t  e.  z  t  /\  ( x 
\  y )  = 
U. z ) ) ) )
81, 7anbi12d 747 . . 3  |-  ( s  =  S  ->  (
( (/)  e.  s  /\  A. x  e.  s  A. y  e.  s  (
( x  i^i  y
)  e.  s  /\  E. z  e.  ~P  s
( z  e.  Fin  /\ Disj  t  e.  z  t  /\  ( x  \  y
)  =  U. z
) ) )  <->  ( (/)  e.  S  /\  A. x  e.  S  A. y  e.  S  ( ( x  i^i  y )  e.  S  /\  E. z  e.  ~P  S ( z  e. 
Fin  /\ Disj  t  e.  z  t  /\  ( x 
\  y )  = 
U. z ) ) ) ) )
9 issros.1 . . 3  |-  N  =  { s  e.  ~P ~P O  |  ( (/) 
e.  s  /\  A. x  e.  s  A. y  e.  s  (
( x  i^i  y
)  e.  s  /\  E. z  e.  ~P  s
( z  e.  Fin  /\ Disj  t  e.  z  t  /\  ( x  \  y
)  =  U. z
) ) ) }
108, 9elrab2 3366 . 2  |-  ( S  e.  N  <->  ( S  e.  ~P ~P O  /\  ( (/)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
( x  i^i  y
)  e.  S  /\  E. z  e.  ~P  S
( z  e.  Fin  /\ Disj  t  e.  z  t  /\  ( x  \  y
)  =  U. z
) ) ) ) )
11 3anass 1042 . 2  |-  ( ( S  e.  ~P ~P O  /\  (/)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
( x  i^i  y
)  e.  S  /\  E. z  e.  ~P  S
( z  e.  Fin  /\ Disj  t  e.  z  t  /\  ( x  \  y
)  =  U. z
) ) )  <->  ( S  e.  ~P ~P O  /\  ( (/)  e.  S  /\  A. x  e.  S  A. y  e.  S  (
( x  i^i  y
)  e.  S  /\  E. z  e.  ~P  S
( z  e.  Fin  /\ Disj  t  e.  z  t  /\  ( x  \  y
)  =  U. z
) ) ) ) )
1210, 11bitr4i 267 1  |-  ( S  e.  N  <->  ( S  e.  ~P ~P O  /\  (/) 
e.  S  /\  A. x  e.  S  A. y  e.  S  (
( x  i^i  y
)  e.  S  /\  E. z  e.  ~P  S
( z  e.  Fin  /\ Disj  t  e.  z  t  /\  ( x  \  y
)  =  U. z
) ) ) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    \ cdif 3571    i^i cin 3573   (/)c0 3915   ~Pcpw 4158   U.cuni 4436  Disj wdisj 4620   Fincfn 7955
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by:  srossspw  30239  0elsros  30240  inelsros  30241  diffiunisros  30242  rossros  30243
  Copyright terms: Public domain W3C validator