MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  iununi Structured version   Visualization version   Unicode version

Theorem iununi 4610
Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.)
Assertion
Ref Expression
iununi  |-  ( ( B  =  (/)  ->  A  =  (/) )  <->  ( A  u.  U. B )  = 
U_ x  e.  B  ( A  u.  x
) )
Distinct variable groups:    x, A    x, B

Proof of Theorem iununi
StepHypRef Expression
1 df-ne 2795 . . . . . . 7  |-  ( B  =/=  (/)  <->  -.  B  =  (/) )
2 iunconst 4529 . . . . . . 7  |-  ( B  =/=  (/)  ->  U_ x  e.  B  A  =  A )
31, 2sylbir 225 . . . . . 6  |-  ( -.  B  =  (/)  ->  U_ x  e.  B  A  =  A )
4 iun0 4576 . . . . . . 7  |-  U_ x  e.  B  (/)  =  (/)
5 id 22 . . . . . . . 8  |-  ( A  =  (/)  ->  A  =  (/) )
65iuneq2d 4547 . . . . . . 7  |-  ( A  =  (/)  ->  U_ x  e.  B  A  =  U_ x  e.  B  (/) )
74, 6, 53eqtr4a 2682 . . . . . 6  |-  ( A  =  (/)  ->  U_ x  e.  B  A  =  A )
83, 7ja 173 . . . . 5  |-  ( ( B  =  (/)  ->  A  =  (/) )  ->  U_ x  e.  B  A  =  A )
98eqcomd 2628 . . . 4  |-  ( ( B  =  (/)  ->  A  =  (/) )  ->  A  =  U_ x  e.  B  A )
109uneq1d 3766 . . 3  |-  ( ( B  =  (/)  ->  A  =  (/) )  ->  ( A  u.  U_ x  e.  B  x )  =  ( U_ x  e.  B  A  u.  U_ x  e.  B  x
) )
11 uniiun 4573 . . . 4  |-  U. B  =  U_ x  e.  B  x
1211uneq2i 3764 . . 3  |-  ( A  u.  U. B )  =  ( A  u.  U_ x  e.  B  x )
13 iunun 4604 . . 3  |-  U_ x  e.  B  ( A  u.  x )  =  (
U_ x  e.  B  A  u.  U_ x  e.  B  x )
1410, 12, 133eqtr4g 2681 . 2  |-  ( ( B  =  (/)  ->  A  =  (/) )  ->  ( A  u.  U. B )  =  U_ x  e.  B  ( A  u.  x ) )
15 unieq 4444 . . . . . . 7  |-  ( B  =  (/)  ->  U. B  =  U. (/) )
16 uni0 4465 . . . . . . 7  |-  U. (/)  =  (/)
1715, 16syl6eq 2672 . . . . . 6  |-  ( B  =  (/)  ->  U. B  =  (/) )
1817uneq2d 3767 . . . . 5  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  ( A  u.  (/) ) )
19 un0 3967 . . . . 5  |-  ( A  u.  (/) )  =  A
2018, 19syl6eq 2672 . . . 4  |-  ( B  =  (/)  ->  ( A  u.  U. B )  =  A )
21 iuneq1 4534 . . . . 5  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  U_ x  e.  (/)  ( A  u.  x ) )
22 0iun 4577 . . . . 5  |-  U_ x  e.  (/)  ( A  u.  x )  =  (/)
2321, 22syl6eq 2672 . . . 4  |-  ( B  =  (/)  ->  U_ x  e.  B  ( A  u.  x )  =  (/) )
2420, 23eqeq12d 2637 . . 3  |-  ( B  =  (/)  ->  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  <->  A  =  (/) ) )
2524biimpcd 239 . 2  |-  ( ( A  u.  U. B
)  =  U_ x  e.  B  ( A  u.  x )  ->  ( B  =  (/)  ->  A  =  (/) ) )
2614, 25impbii 199 1  |-  ( ( B  =  (/)  ->  A  =  (/) )  <->  ( A  u.  U. B )  = 
U_ x  e.  B  ( A  u.  x
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    = wceq 1483    =/= wne 2794    u. cun 3572   (/)c0 3915   U.cuni 4436   U_ciun 4520
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-uni 4437  df-iun 4522
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator