| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > iununi | Structured version Visualization version Unicode version | ||
| Description: A relationship involving union and indexed union. Exercise 25 of [Enderton] p. 33. (Contributed by NM, 25-Nov-2003.) (Proof shortened by Mario Carneiro, 17-Nov-2016.) |
| Ref | Expression |
|---|---|
| iununi |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-ne 2795 |
. . . . . . 7
| |
| 2 | iunconst 4529 |
. . . . . . 7
| |
| 3 | 1, 2 | sylbir 225 |
. . . . . 6
|
| 4 | iun0 4576 |
. . . . . . 7
| |
| 5 | id 22 |
. . . . . . . 8
| |
| 6 | 5 | iuneq2d 4547 |
. . . . . . 7
|
| 7 | 4, 6, 5 | 3eqtr4a 2682 |
. . . . . 6
|
| 8 | 3, 7 | ja 173 |
. . . . 5
|
| 9 | 8 | eqcomd 2628 |
. . . 4
|
| 10 | 9 | uneq1d 3766 |
. . 3
|
| 11 | uniiun 4573 |
. . . 4
| |
| 12 | 11 | uneq2i 3764 |
. . 3
|
| 13 | iunun 4604 |
. . 3
| |
| 14 | 10, 12, 13 | 3eqtr4g 2681 |
. 2
|
| 15 | unieq 4444 |
. . . . . . 7
| |
| 16 | uni0 4465 |
. . . . . . 7
| |
| 17 | 15, 16 | syl6eq 2672 |
. . . . . 6
|
| 18 | 17 | uneq2d 3767 |
. . . . 5
|
| 19 | un0 3967 |
. . . . 5
| |
| 20 | 18, 19 | syl6eq 2672 |
. . . 4
|
| 21 | iuneq1 4534 |
. . . . 5
| |
| 22 | 0iun 4577 |
. . . . 5
| |
| 23 | 21, 22 | syl6eq 2672 |
. . . 4
|
| 24 | 20, 23 | eqeq12d 2637 |
. . 3
|
| 25 | 24 | biimpcd 239 |
. 2
|
| 26 | 14, 25 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 df-uni 4437 df-iun 4522 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |