MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpn0 Structured version   Visualization version   Unicode version

Theorem ixpn0 7940
Description: The infinite Cartesian product of a family  B ( x ) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 9305. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
ixpn0  |-  ( X_ x  e.  A  B  =/=  (/)  ->  A. x  e.  A  B  =/=  (/) )

Proof of Theorem ixpn0
Dummy variable  f is distinct from all other variables.
StepHypRef Expression
1 n0 3931 . 2  |-  ( X_ x  e.  A  B  =/=  (/)  <->  E. f  f  e.  X_ x  e.  A  B )
2 df-ixp 7909 . . . . 5  |-  X_ x  e.  A  B  =  { f  |  ( f  Fn  { x  |  x  e.  A }  /\  A. x  e.  A  ( f `  x )  e.  B
) }
32abeq2i 2735 . . . 4  |-  ( f  e.  X_ x  e.  A  B 
<->  ( f  Fn  {
x  |  x  e.  A }  /\  A. x  e.  A  (
f `  x )  e.  B ) )
4 ne0i 3921 . . . . 5  |-  ( ( f `  x )  e.  B  ->  B  =/=  (/) )
54ralimi 2952 . . . 4  |-  ( A. x  e.  A  (
f `  x )  e.  B  ->  A. x  e.  A  B  =/=  (/) )
63, 5simplbiim 659 . . 3  |-  ( f  e.  X_ x  e.  A  B  ->  A. x  e.  A  B  =/=  (/) )
76exlimiv 1858 . 2  |-  ( E. f  f  e.  X_ x  e.  A  B  ->  A. x  e.  A  B  =/=  (/) )
81, 7sylbi 207 1  |-  ( X_ x  e.  A  B  =/=  (/)  ->  A. x  e.  A  B  =/=  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   E.wex 1704    e. wcel 1990   {cab 2608    =/= wne 2794   A.wral 2912   (/)c0 3915    Fn wfn 5883   ` cfv 5888   X_cixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916  df-ixp 7909
This theorem is referenced by:  ixp0  7941  ac9  9305  ac9s  9315
  Copyright terms: Public domain W3C validator