![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > simplbiim | Structured version Visualization version Unicode version |
Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) |
Ref | Expression |
---|---|
simplbiim.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
simplbiim.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
simplbiim |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simplbiim.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | simplbiim.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | adantl 482 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 1, 3 | sylbi 207 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 |
This theorem is referenced by: invdisjrab 4639 solin 5058 xpidtr 5518 elpredim 5692 mpt2difsnif 6753 ixpn0 7940 zltaddlt1le 12324 oddnn02np1 15072 sumeven 15110 dvdsprmpweqnn 15589 sgrpass 17290 zringndrg 19838 pmatcoe1fsupp 20506 t1sncld 21130 regsep 21138 nrmsep3 21159 ncvsprp 22952 ncvsm1 22954 ncvsdif 22955 ncvspi 22956 ncvspds 22961 lgsqrlem4 25074 vtxdginducedm1lem4 26438 isclwwlksnx 26889 hashecclwwlksn1 26954 umgrhashecclwwlk 26955 0spth 26987 eucrctshift 27103 frcond1 27130 2pthfrgr 27148 frgrncvvdeqlem7 27169 frgrncvvdeq 27173 frgrwopreglem3 27178 frgrwopreglem5lem 27184 frgr2wwlk1 27193 stcltr1i 29133 bnj570 30975 bnj1145 31061 bnj1398 31102 bnj1442 31117 sconnpht 31211 poimirlem25 33434 2reu1 41186 lighneallem2 41523 fdmdifeqresdif 42120 |
Copyright terms: Public domain | W3C validator |