MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ixpn0 Structured version   Visualization version   GIF version

Theorem ixpn0 7940
Description: The infinite Cartesian product of a family 𝐵(𝑥) with an empty member is empty. The converse of this theorem is equivalent to the Axiom of Choice, see ac9 9305. (Contributed by Mario Carneiro, 22-Jun-2016.)
Assertion
Ref Expression
ixpn0 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)

Proof of Theorem ixpn0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 n0 3931 . 2 (X𝑥𝐴 𝐵 ≠ ∅ ↔ ∃𝑓 𝑓X𝑥𝐴 𝐵)
2 df-ixp 7909 . . . . 5 X𝑥𝐴 𝐵 = {𝑓 ∣ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵)}
32abeq2i 2735 . . . 4 (𝑓X𝑥𝐴 𝐵 ↔ (𝑓 Fn {𝑥𝑥𝐴} ∧ ∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵))
4 ne0i 3921 . . . . 5 ((𝑓𝑥) ∈ 𝐵𝐵 ≠ ∅)
54ralimi 2952 . . . 4 (∀𝑥𝐴 (𝑓𝑥) ∈ 𝐵 → ∀𝑥𝐴 𝐵 ≠ ∅)
63, 5simplbiim 659 . . 3 (𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 𝐵 ≠ ∅)
76exlimiv 1858 . 2 (∃𝑓 𝑓X𝑥𝐴 𝐵 → ∀𝑥𝐴 𝐵 ≠ ∅)
81, 7sylbi 207 1 (X𝑥𝐴 𝐵 ≠ ∅ → ∀𝑥𝐴 𝐵 ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  wex 1704  wcel 1990  {cab 2608  wne 2794  wral 2912  c0 3915   Fn wfn 5883  cfv 5888  Xcixp 7908
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-v 3202  df-dif 3577  df-nul 3916  df-ixp 7909
This theorem is referenced by:  ixp0  7941  ac9  9305  ac9s  9315
  Copyright terms: Public domain W3C validator