| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dfon2lem4 | Structured version Visualization version Unicode version | ||
| Description: Lemma for dfon2 31697. If two sets satisfy the new definition, then one is a subset of the other. (Contributed by Scott Fenton, 25-Feb-2011.) |
| Ref | Expression |
|---|---|
| dfon2lem4.1 |
|
| dfon2lem4.2 |
|
| Ref | Expression |
|---|---|
| dfon2lem4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inss1 3833 |
. . . . . . . . 9
| |
| 2 | 1 | sseli 3599 |
. . . . . . . 8
|
| 3 | dfon2lem4.1 |
. . . . . . . . . . . 12
| |
| 4 | dfon2lem3 31690 |
. . . . . . . . . . . 12
| |
| 5 | 3, 4 | ax-mp 5 |
. . . . . . . . . . 11
|
| 6 | 5 | simprd 479 |
. . . . . . . . . 10
|
| 7 | eleq1 2689 |
. . . . . . . . . . . . 13
| |
| 8 | eleq2 2690 |
. . . . . . . . . . . . 13
| |
| 9 | 7, 8 | bitrd 268 |
. . . . . . . . . . . 12
|
| 10 | 9 | notbid 308 |
. . . . . . . . . . 11
|
| 11 | 10 | rspccv 3306 |
. . . . . . . . . 10
|
| 12 | 6, 11 | syl 17 |
. . . . . . . . 9
|
| 13 | 12 | adantr 481 |
. . . . . . . 8
|
| 14 | 2, 13 | syl5 34 |
. . . . . . 7
|
| 15 | 14 | pm2.01d 181 |
. . . . . 6
|
| 16 | elin 3796 |
. . . . . 6
| |
| 17 | 15, 16 | sylnib 318 |
. . . . 5
|
| 18 | 5 | simpld 475 |
. . . . . . . 8
|
| 19 | dfon2lem4.2 |
. . . . . . . . . 10
| |
| 20 | dfon2lem3 31690 |
. . . . . . . . . 10
| |
| 21 | 19, 20 | ax-mp 5 |
. . . . . . . . 9
|
| 22 | 21 | simpld 475 |
. . . . . . . 8
|
| 23 | trin 4763 |
. . . . . . . 8
| |
| 24 | 18, 22, 23 | syl2an 494 |
. . . . . . 7
|
| 25 | 3 | inex1 4799 |
. . . . . . . . 9
|
| 26 | psseq1 3694 |
. . . . . . . . . . 11
| |
| 27 | treq 4758 |
. . . . . . . . . . 11
| |
| 28 | 26, 27 | anbi12d 747 |
. . . . . . . . . 10
|
| 29 | eleq1 2689 |
. . . . . . . . . 10
| |
| 30 | 28, 29 | imbi12d 334 |
. . . . . . . . 9
|
| 31 | 25, 30 | spcv 3299 |
. . . . . . . 8
|
| 32 | 31 | adantr 481 |
. . . . . . 7
|
| 33 | 24, 32 | mpan2d 710 |
. . . . . 6
|
| 34 | psseq1 3694 |
. . . . . . . . . . 11
| |
| 35 | treq 4758 |
. . . . . . . . . . 11
| |
| 36 | 34, 35 | anbi12d 747 |
. . . . . . . . . 10
|
| 37 | eleq1 2689 |
. . . . . . . . . 10
| |
| 38 | 36, 37 | imbi12d 334 |
. . . . . . . . 9
|
| 39 | 25, 38 | spcv 3299 |
. . . . . . . 8
|
| 40 | 39 | adantl 482 |
. . . . . . 7
|
| 41 | 24, 40 | mpan2d 710 |
. . . . . 6
|
| 42 | 33, 41 | anim12d 586 |
. . . . 5
|
| 43 | 17, 42 | mtod 189 |
. . . 4
|
| 44 | ianor 509 |
. . . 4
| |
| 45 | 43, 44 | sylib 208 |
. . 3
|
| 46 | sspss 3706 |
. . . . 5
| |
| 47 | 1, 46 | mpbi 220 |
. . . 4
|
| 48 | inss2 3834 |
. . . . 5
| |
| 49 | sspss 3706 |
. . . . 5
| |
| 50 | 48, 49 | mpbi 220 |
. . . 4
|
| 51 | orel1 397 |
. . . . . 6
| |
| 52 | orc 400 |
. . . . . 6
| |
| 53 | 51, 52 | syl6 35 |
. . . . 5
|
| 54 | orel1 397 |
. . . . . 6
| |
| 55 | olc 399 |
. . . . . 6
| |
| 56 | 54, 55 | syl6 35 |
. . . . 5
|
| 57 | 53, 56 | jaoa 532 |
. . . 4
|
| 58 | 47, 50, 57 | mp2ani 714 |
. . 3
|
| 59 | 45, 58 | syl 17 |
. 2
|
| 60 | df-ss 3588 |
. . 3
| |
| 61 | sseqin2 3817 |
. . 3
| |
| 62 | 60, 61 | orbi12i 543 |
. 2
|
| 63 | 59, 62 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-sbc 3436 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-pss 3590 df-nul 3916 df-pw 4160 df-sn 4178 df-pr 4180 df-uni 4437 df-iun 4522 df-tr 4753 df-suc 5729 |
| This theorem is referenced by: dfon2lem5 31692 |
| Copyright terms: Public domain | W3C validator |