MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  unconn Structured version   Visualization version   Unicode version

Theorem unconn 21232
Description: The union of two connected overlapping subspaces is connected. (Contributed by FL, 29-May-2014.) (Proof shortened by Mario Carneiro, 11-Jun-2014.)
Assertion
Ref Expression
unconn  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  ( A  i^i  B )  =/=  (/) )  ->  ( ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )  ->  ( Jt  ( A  u.  B ) )  e. Conn
) )

Proof of Theorem unconn
Dummy variables  x  k are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . 3  |-  ( ( A  i^i  B )  =/=  (/)  <->  E. x  x  e.  ( A  i^i  B
) )
2 uniiun 4573 . . . . . . . . 9  |-  U. { A ,  B }  =  U_ k  e.  { A ,  B }
k
3 simpl1 1064 . . . . . . . . . . . 12  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  J  e.  (TopOn `  X ) )
4 toponmax 20730 . . . . . . . . . . . 12  |-  ( J  e.  (TopOn `  X
)  ->  X  e.  J )
53, 4syl 17 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  X  e.  J )
6 simpl2l 1114 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  A  C_  X
)
75, 6ssexd 4805 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  A  e.  _V )
8 simpl2r 1115 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  B  C_  X
)
95, 8ssexd 4805 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  B  e.  _V )
10 uniprg 4450 . . . . . . . . . 10  |-  ( ( A  e.  _V  /\  B  e.  _V )  ->  U. { A ,  B }  =  ( A  u.  B )
)
117, 9, 10syl2anc 693 . . . . . . . . 9  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  U. { A ,  B }  =  ( A  u.  B ) )
122, 11syl5eqr 2670 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  U_ k  e. 
{ A ,  B } k  =  ( A  u.  B ) )
1312oveq2d 6666 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  ( Jt  U_ k  e.  { A ,  B } k )  =  ( Jt  ( A  u.  B ) ) )
14 vex 3203 . . . . . . . . . 10  |-  k  e. 
_V
1514elpr 4198 . . . . . . . . 9  |-  ( k  e.  { A ,  B }  <->  ( k  =  A  \/  k  =  B ) )
16 simpl2 1065 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  ( A  C_  X  /\  B  C_  X ) )
17 sseq1 3626 . . . . . . . . . . . 12  |-  ( k  =  A  ->  (
k  C_  X  <->  A  C_  X
) )
1817biimprd 238 . . . . . . . . . . 11  |-  ( k  =  A  ->  ( A  C_  X  ->  k  C_  X ) )
19 sseq1 3626 . . . . . . . . . . . 12  |-  ( k  =  B  ->  (
k  C_  X  <->  B  C_  X
) )
2019biimprd 238 . . . . . . . . . . 11  |-  ( k  =  B  ->  ( B  C_  X  ->  k  C_  X ) )
2118, 20jaoa 532 . . . . . . . . . 10  |-  ( ( k  =  A  \/  k  =  B )  ->  ( ( A  C_  X  /\  B  C_  X
)  ->  k  C_  X ) )
2216, 21mpan9 486 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  /\  ( k  =  A  \/  k  =  B ) )  -> 
k  C_  X )
2315, 22sylan2b 492 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  /\  k  e.  { A ,  B }
)  ->  k  C_  X )
24 simpl3 1066 . . . . . . . . . . 11  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  x  e.  ( A  i^i  B ) )
25 elin 3796 . . . . . . . . . . 11  |-  ( x  e.  ( A  i^i  B )  <->  ( x  e.  A  /\  x  e.  B ) )
2624, 25sylib 208 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  ( x  e.  A  /\  x  e.  B ) )
27 eleq2 2690 . . . . . . . . . . . 12  |-  ( k  =  A  ->  (
x  e.  k  <->  x  e.  A ) )
2827biimprd 238 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
x  e.  A  ->  x  e.  k )
)
29 eleq2 2690 . . . . . . . . . . . 12  |-  ( k  =  B  ->  (
x  e.  k  <->  x  e.  B ) )
3029biimprd 238 . . . . . . . . . . 11  |-  ( k  =  B  ->  (
x  e.  B  ->  x  e.  k )
)
3128, 30jaoa 532 . . . . . . . . . 10  |-  ( ( k  =  A  \/  k  =  B )  ->  ( ( x  e.  A  /\  x  e.  B )  ->  x  e.  k ) )
3226, 31mpan9 486 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  /\  ( k  =  A  \/  k  =  B ) )  ->  x  e.  k )
3315, 32sylan2b 492 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  /\  k  e.  { A ,  B }
)  ->  x  e.  k )
34 simpr 477 . . . . . . . . . 10  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)
35 oveq2 6658 . . . . . . . . . . . . 13  |-  ( k  =  A  ->  ( Jt  k )  =  ( Jt  A ) )
3635eleq1d 2686 . . . . . . . . . . . 12  |-  ( k  =  A  ->  (
( Jt  k )  e. Conn  <->  ( Jt  A )  e. Conn )
)
3736biimprd 238 . . . . . . . . . . 11  |-  ( k  =  A  ->  (
( Jt  A )  e. Conn  ->  ( Jt  k )  e. Conn )
)
38 oveq2 6658 . . . . . . . . . . . . 13  |-  ( k  =  B  ->  ( Jt  k )  =  ( Jt  B ) )
3938eleq1d 2686 . . . . . . . . . . . 12  |-  ( k  =  B  ->  (
( Jt  k )  e. Conn  <->  ( Jt  B )  e. Conn )
)
4039biimprd 238 . . . . . . . . . . 11  |-  ( k  =  B  ->  (
( Jt  B )  e. Conn  ->  ( Jt  k )  e. Conn )
)
4137, 40jaoa 532 . . . . . . . . . 10  |-  ( ( k  =  A  \/  k  =  B )  ->  ( ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )  ->  ( Jt  k )  e. Conn
) )
4234, 41mpan9 486 . . . . . . . . 9  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  /\  ( k  =  A  \/  k  =  B ) )  -> 
( Jt  k )  e. Conn
)
4315, 42sylan2b 492 . . . . . . . 8  |-  ( ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B ) )  /\  ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  /\  k  e.  { A ,  B }
)  ->  ( Jt  k
)  e. Conn )
443, 23, 33, 43iunconn 21231 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  ( Jt  U_ k  e.  { A ,  B } k )  e. Conn
)
4513, 44eqeltrrd 2702 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  /\  (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )
)  ->  ( Jt  ( A  u.  B )
)  e. Conn )
4645ex 450 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  x  e.  ( A  i^i  B
) )  ->  (
( ( Jt  A )  e. Conn  /\  ( Jt  B
)  e. Conn )  ->  ( Jt  ( A  u.  B
) )  e. Conn )
)
47463expia 1267 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X ) )  -> 
( x  e.  ( A  i^i  B )  ->  ( ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )  ->  ( Jt  ( A  u.  B ) )  e. Conn
) ) )
4847exlimdv 1861 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X ) )  -> 
( E. x  x  e.  ( A  i^i  B )  ->  ( (
( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )  ->  ( Jt  ( A  u.  B ) )  e. Conn
) ) )
491, 48syl5bi 232 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X ) )  -> 
( ( A  i^i  B )  =/=  (/)  ->  (
( ( Jt  A )  e. Conn  /\  ( Jt  B
)  e. Conn )  ->  ( Jt  ( A  u.  B
) )  e. Conn )
) )
50493impia 1261 1  |-  ( ( J  e.  (TopOn `  X )  /\  ( A  C_  X  /\  B  C_  X )  /\  ( A  i^i  B )  =/=  (/) )  ->  ( ( ( Jt  A )  e. Conn  /\  ( Jt  B )  e. Conn )  ->  ( Jt  ( A  u.  B ) )  e. Conn
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   _Vcvv 3200    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {cpr 4179   U.cuni 4436   U_ciun 4520   ` cfv 5888  (class class class)co 6650   ↾t crest 16081  TopOnctopon 20715  Conncconn 21214
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-oadd 7564  df-er 7742  df-en 7956  df-fin 7959  df-fi 8317  df-rest 16083  df-topgen 16104  df-top 20699  df-topon 20716  df-bases 20750  df-cld 20823  df-conn 21215
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator