Users' Mathboxes Mathbox for David A. Wheeler < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  joinlmuladdmuli Structured version   Visualization version   Unicode version

Theorem joinlmuladdmuli 42519
Description: Join AB+CB into (A+C) on LHS. (Contributed by David A. Wheeler, 26-Oct-2019.)
Hypotheses
Ref Expression
joinlmuladdmuli.1  |-  A  e.  CC
joinlmuladdmuli.2  |-  B  e.  CC
joinlmuladdmuli.3  |-  C  e.  CC
joinlmuladdmuli.4  |-  ( ( A  x.  B )  +  ( C  x.  B ) )  =  D
Assertion
Ref Expression
joinlmuladdmuli  |-  ( ( A  +  C )  x.  B )  =  D

Proof of Theorem joinlmuladdmuli
StepHypRef Expression
1 joinlmuladdmuli.1 . . . 4  |-  A  e.  CC
21a1i 11 . . 3  |-  ( T. 
->  A  e.  CC )
3 joinlmuladdmuli.2 . . . 4  |-  B  e.  CC
43a1i 11 . . 3  |-  ( T. 
->  B  e.  CC )
5 joinlmuladdmuli.3 . . . 4  |-  C  e.  CC
65a1i 11 . . 3  |-  ( T. 
->  C  e.  CC )
7 joinlmuladdmuli.4 . . . 4  |-  ( ( A  x.  B )  +  ( C  x.  B ) )  =  D
87a1i 11 . . 3  |-  ( T. 
->  ( ( A  x.  B )  +  ( C  x.  B ) )  =  D )
92, 4, 6, 8joinlmuladdmuld 10067 . 2  |-  ( T. 
->  ( ( A  +  C )  x.  B
)  =  D )
109trud 1493 1  |-  ( ( A  +  C )  x.  B )  =  D
Colors of variables: wff setvar class
Syntax hints:    = wceq 1483   T. wtru 1484    e. wcel 1990  (class class class)co 6650   CCcc 9934    + caddc 9939    x. cmul 9941
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-addcl 9996  ax-mulcom 10000  ax-distr 10003
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator