| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lpni | Structured version Visualization version Unicode version | ||
| Description: For any line in a planar incidence geometry, there exists a point not on the line. (Contributed by Jeff Hankins, 15-Aug-2009.) |
| Ref | Expression |
|---|---|
| l2p.1 |
|
| Ref | Expression |
|---|---|
| lpni |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | l2p.1 |
. . . 4
| |
| 2 | 1 | tncp 27330 |
. . 3
|
| 3 | eleq2 2690 |
. . . . . . . . . 10
| |
| 4 | eleq2 2690 |
. . . . . . . . . 10
| |
| 5 | eleq2 2690 |
. . . . . . . . . 10
| |
| 6 | 3, 4, 5 | 3anbi123d 1399 |
. . . . . . . . 9
|
| 7 | 6 | notbid 308 |
. . . . . . . 8
|
| 8 | 7 | rspccv 3306 |
. . . . . . 7
|
| 9 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 10 | 9 | notbid 308 |
. . . . . . . . . . 11
|
| 11 | 10 | rspcev 3309 |
. . . . . . . . . 10
|
| 12 | 11 | ex 450 |
. . . . . . . . 9
|
| 13 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 14 | 13 | notbid 308 |
. . . . . . . . . . 11
|
| 15 | 14 | rspcev 3309 |
. . . . . . . . . 10
|
| 16 | 15 | ex 450 |
. . . . . . . . 9
|
| 17 | eleq1 2689 |
. . . . . . . . . . . 12
| |
| 18 | 17 | notbid 308 |
. . . . . . . . . . 11
|
| 19 | 18 | rspcev 3309 |
. . . . . . . . . 10
|
| 20 | 19 | ex 450 |
. . . . . . . . 9
|
| 21 | 12, 16, 20 | 3jaao 1396 |
. . . . . . . 8
|
| 22 | 3ianor 1055 |
. . . . . . . 8
| |
| 23 | df-nel 2898 |
. . . . . . . . 9
| |
| 24 | 23 | rexbii 3041 |
. . . . . . . 8
|
| 25 | 21, 22, 24 | 3imtr4g 285 |
. . . . . . 7
|
| 26 | 8, 25 | syl9r 78 |
. . . . . 6
|
| 27 | 26 | 3expia 1267 |
. . . . 5
|
| 28 | 27 | rexlimdv 3030 |
. . . 4
|
| 29 | 28 | rexlimivv 3036 |
. . 3
|
| 30 | 2, 29 | syl 17 |
. 2
|
| 31 | 30 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3or 1038 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-nel 2898 df-ral 2917 df-rex 2918 df-reu 2919 df-v 3202 df-uni 4437 df-plig 27327 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |