| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > l2p | Structured version Visualization version Unicode version | ||
| Description: For any line in a planar incidence geometry, there exist two different points on the line. (Contributed by AV, 28-Nov-2021.) |
| Ref | Expression |
|---|---|
| l2p.1 |
|
| Ref | Expression |
|---|---|
| l2p |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | l2p.1 |
. . . . 5
| |
| 2 | 1 | isplig 27328 |
. . . 4
|
| 3 | eleq2 2690 |
. . . . . . . 8
| |
| 4 | eleq2 2690 |
. . . . . . . 8
| |
| 5 | 3, 4 | 3anbi23d 1402 |
. . . . . . 7
|
| 6 | 5 | 2rexbidv 3057 |
. . . . . 6
|
| 7 | 6 | rspccv 3306 |
. . . . 5
|
| 8 | 7 | 3ad2ant2 1083 |
. . . 4
|
| 9 | 2, 8 | syl6bi 243 |
. . 3
|
| 10 | 9 | pm2.43i 52 |
. 2
|
| 11 | 10 | imp 445 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-reu 2919 df-v 3202 df-uni 4437 df-plig 27327 |
| This theorem is referenced by: nsnlplig 27333 nsnlpligALT 27334 n0lpligALT 27336 |
| Copyright terms: Public domain | W3C validator |