MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltordlem Structured version   Visualization version   Unicode version

Theorem ltordlem 10553
Description: Lemma for ltord1 10554. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1  |-  ( x  =  y  ->  A  =  B )
ltord.2  |-  ( x  =  C  ->  A  =  M )
ltord.3  |-  ( x  =  D  ->  A  =  N )
ltord.4  |-  S  C_  RR
ltord.5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
ltord.6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
Assertion
Ref Expression
ltordlem  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <  D  ->  M  <  N ) )
Distinct variable groups:    x, B    x, y, C    x, D, y    x, M, y    x, N, y    ph, x, y   
x, S, y
Allowed substitution hints:    A( x, y)    B( y)

Proof of Theorem ltordlem
StepHypRef Expression
1 ltord.6 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
21ralrimivva 2971 . 2  |-  ( ph  ->  A. x  e.  S  A. y  e.  S  ( x  <  y  ->  A  <  B ) )
3 breq1 4656 . . . 4  |-  ( x  =  C  ->  (
x  <  y  <->  C  <  y ) )
4 ltord.2 . . . . 5  |-  ( x  =  C  ->  A  =  M )
54breq1d 4663 . . . 4  |-  ( x  =  C  ->  ( A  <  B  <->  M  <  B ) )
63, 5imbi12d 334 . . 3  |-  ( x  =  C  ->  (
( x  <  y  ->  A  <  B )  <-> 
( C  <  y  ->  M  <  B ) ) )
7 breq2 4657 . . . 4  |-  ( y  =  D  ->  ( C  <  y  <->  C  <  D ) )
8 eqeq1 2626 . . . . . . 7  |-  ( x  =  y  ->  (
x  =  D  <->  y  =  D ) )
9 ltord.1 . . . . . . . 8  |-  ( x  =  y  ->  A  =  B )
109eqeq1d 2624 . . . . . . 7  |-  ( x  =  y  ->  ( A  =  N  <->  B  =  N ) )
118, 10imbi12d 334 . . . . . 6  |-  ( x  =  y  ->  (
( x  =  D  ->  A  =  N )  <->  ( y  =  D  ->  B  =  N ) ) )
12 ltord.3 . . . . . 6  |-  ( x  =  D  ->  A  =  N )
1311, 12chvarv 2263 . . . . 5  |-  ( y  =  D  ->  B  =  N )
1413breq2d 4665 . . . 4  |-  ( y  =  D  ->  ( M  <  B  <->  M  <  N ) )
157, 14imbi12d 334 . . 3  |-  ( y  =  D  ->  (
( C  <  y  ->  M  <  B )  <-> 
( C  <  D  ->  M  <  N ) ) )
166, 15rspc2v 3322 . 2  |-  ( ( C  e.  S  /\  D  e.  S )  ->  ( A. x  e.  S  A. y  e.  S  ( x  < 
y  ->  A  <  B )  ->  ( C  <  D  ->  M  <  N ) ) )
172, 16mpan9 486 1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <  D  ->  M  <  N ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653   RRcr 9935    < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-br 4654
This theorem is referenced by:  ltord1  10554
  Copyright terms: Public domain W3C validator