MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltord1 Structured version   Visualization version   Unicode version

Theorem ltord1 10554
Description: Infer an ordering relation from a proof in only one direction. (Contributed by Mario Carneiro, 14-Jun-2014.)
Hypotheses
Ref Expression
ltord.1  |-  ( x  =  y  ->  A  =  B )
ltord.2  |-  ( x  =  C  ->  A  =  M )
ltord.3  |-  ( x  =  D  ->  A  =  N )
ltord.4  |-  S  C_  RR
ltord.5  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
ltord.6  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
Assertion
Ref Expression
ltord1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <  D  <->  M  <  N ) )
Distinct variable groups:    x, B    x, y, C    x, D, y    x, M, y    x, N, y    ph, x, y   
x, S, y
Allowed substitution hints:    A( x, y)    B( y)

Proof of Theorem ltord1
StepHypRef Expression
1 ltord.1 . . 3  |-  ( x  =  y  ->  A  =  B )
2 ltord.2 . . 3  |-  ( x  =  C  ->  A  =  M )
3 ltord.3 . . 3  |-  ( x  =  D  ->  A  =  N )
4 ltord.4 . . 3  |-  S  C_  RR
5 ltord.5 . . 3  |-  ( (
ph  /\  x  e.  S )  ->  A  e.  RR )
6 ltord.6 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x  <  y  ->  A  <  B ) )
71, 2, 3, 4, 5, 6ltordlem 10553 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <  D  ->  M  <  N ) )
8 eqeq1 2626 . . . . . . . 8  |-  ( x  =  C  ->  (
x  =  D  <->  C  =  D ) )
92eqeq1d 2624 . . . . . . . 8  |-  ( x  =  C  ->  ( A  =  N  <->  M  =  N ) )
108, 9imbi12d 334 . . . . . . 7  |-  ( x  =  C  ->  (
( x  =  D  ->  A  =  N )  <->  ( C  =  D  ->  M  =  N ) ) )
1110, 3vtoclg 3266 . . . . . 6  |-  ( C  e.  S  ->  ( C  =  D  ->  M  =  N ) )
1211ad2antrl 764 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  =  D  ->  M  =  N ) )
131, 3, 2, 4, 5, 6ltordlem 10553 . . . . . 6  |-  ( (
ph  /\  ( D  e.  S  /\  C  e.  S ) )  -> 
( D  <  C  ->  N  <  M ) )
1413ancom2s 844 . . . . 5  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( D  <  C  ->  N  <  M ) )
1512, 14orim12d 883 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( ( C  =  D  \/  D  < 
C )  ->  ( M  =  N  \/  N  <  M ) ) )
1615con3d 148 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( -.  ( M  =  N  \/  N  <  M )  ->  -.  ( C  =  D  \/  D  <  C ) ) )
175ralrimiva 2966 . . . . . 6  |-  ( ph  ->  A. x  e.  S  A  e.  RR )
182eleq1d 2686 . . . . . . 7  |-  ( x  =  C  ->  ( A  e.  RR  <->  M  e.  RR ) )
1918rspccva 3308 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  C  e.  S )  ->  M  e.  RR )
2017, 19sylan 488 . . . . 5  |-  ( (
ph  /\  C  e.  S )  ->  M  e.  RR )
213eleq1d 2686 . . . . . . 7  |-  ( x  =  D  ->  ( A  e.  RR  <->  N  e.  RR ) )
2221rspccva 3308 . . . . . 6  |-  ( ( A. x  e.  S  A  e.  RR  /\  D  e.  S )  ->  N  e.  RR )
2317, 22sylan 488 . . . . 5  |-  ( (
ph  /\  D  e.  S )  ->  N  e.  RR )
2420, 23anim12dan 882 . . . 4  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( M  e.  RR  /\  N  e.  RR ) )
25 axlttri 10109 . . . 4  |-  ( ( M  e.  RR  /\  N  e.  RR )  ->  ( M  <  N  <->  -.  ( M  =  N  \/  N  <  M
) ) )
2624, 25syl 17 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( M  <  N  <->  -.  ( M  =  N  \/  N  <  M
) ) )
274sseli 3599 . . . . 5  |-  ( C  e.  S  ->  C  e.  RR )
284sseli 3599 . . . . 5  |-  ( D  e.  S  ->  D  e.  RR )
29 axlttri 10109 . . . . 5  |-  ( ( C  e.  RR  /\  D  e.  RR )  ->  ( C  <  D  <->  -.  ( C  =  D  \/  D  <  C
) ) )
3027, 28, 29syl2an 494 . . . 4  |-  ( ( C  e.  S  /\  D  e.  S )  ->  ( C  <  D  <->  -.  ( C  =  D  \/  D  <  C
) ) )
3130adantl 482 . . 3  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <  D  <->  -.  ( C  =  D  \/  D  <  C
) ) )
3216, 26, 313imtr4d 283 . 2  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( M  <  N  ->  C  <  D ) )
337, 32impbid 202 1  |-  ( (
ph  /\  ( C  e.  S  /\  D  e.  S ) )  -> 
( C  <  D  <->  M  <  N ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    C_ wss 3574   class class class wbr 4653   RRcr 9935    < clt 10074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-resscn 9993  ax-pre-lttri 10010
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-er 7742  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-ltxr 10079
This theorem is referenced by:  leord1  10555  ltord2  10557  ltexp2  12914  eflt  14847  tanord1  24283  tanord  24284  monotuz  37506  monotoddzzfi  37507  rpexpmord  37513
  Copyright terms: Public domain W3C validator